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Abstract
We study the analytic proof of the prime number theorem given by Jacques
Hadamard and Charles Poussin in the year 1896. We begin by reformulating the
problem using complex analysis and introduce the Riemann Zeta function ζ(s).
We then establish some of its useful properties and study the behaviour of ζ(s)
near the line σ = 1. Finally we show that ζ(s) has no zeros of the form 1 + it and
conclude the proof.

Keywords: Prime number theorem, Riemann zeta function, analytic number
theory, distribution of primes

Background
The prime number theorem first appeared in 1798 as a conjecture by the French
mathematician Legendre. On the basis of his study of a table of primes up
to 1, 000, 000, Legendre stated that if x is not greater than 1, 000, 000, then

x
log(x)−1.08366 is very close to the number of primes less than x. The German math-

ematician Gauss also conjectured an equivalent of this theorem in his notebook,
perhaps prior to 1800.

Theorem: Let π(x) be the prime-counting function that gives the number
of primes less than or equal to x, for any real number x. Then, x

log(x)
is a

good approximation to π(x), i.e.

lim
x→∞

π(x)[
x

log(x)

] = 1 or π(x) ∼ x

log(x)

In his two papers from 1848 and 1850, the Russian mathematician Chebyshev

was able to prove unconditionally that the ratio π(x)
x/ log(x)

is bounded above and

below by two explicitly given constants near 1, for all sufficiently large x.

Then, in 1859, the mathematician Riemann introduced new ideas into the sub-
ject, chiefly that the distribution of prime numbers is intimately connected with
the zeros of the analytically extended Riemann zeta function of a complex variable.
Extending Riemann’s ideas, two proofs of the asymptotic law of the distribution
of prime numbers were found independently by Jacques Hadamard and Charles
Jean de la Vallée Poussin and appeared in the same year (1896).
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1 Reduction of the problem

For x ∈ R and n ∈ N, we define the following functions introduced by Chebyshev:

ψ(x) =
∑
n≤x

Λ(n) where Λ(n) =

{
log(p) if n = pα;α ∈ N
0 otherwise

θ(x) =
∑
p≤x

log(p) where p is a prime.

Lemma 1.1. For x ∈ R,

ψ(x) =
∑

1 ≤ α ≤ log2 x

θ(x1/α)

Proof. By the definition of ψ(x), it can be rewritten as

ψ(x) =
∑

n≤x ; n=pα

log(p) =
∞∑
α=1

∑
p≤x1/α

log(p)

But 2 ≤ p and we must have p ≤ x1/α. So must restrict α so that 2 ≤ x1/α. Hence

ψ(x) =
∑

1 ≤ α ≤ log2 x

∑
p≤x1/α

log(p) =
∑

1 ≤ α ≤ log2 x

θ(x1/α)

Theorem 1.1. ψ(x) ∼ x ⇐⇒ θ(x) ∼ x

Proof. By Lemma 1.1, we have :

ψ(x)− θ(x) =
∑

2 ≤ α ≤ log2 x

θ(x1/α)

≤
∑

2 ≤ α ≤ log2 x

x1/α log(x1/α)

≤
∑

2 ≤ α ≤ log2 x

x1/2 log(x1/2)

=

√
x log2(x)

2 log(2)

Hence, ψ(x)
x
− θ(x)

x
≤ log2(x)

2
√
x log(2)

. So, by squeeze theorem, we get

lim
x→∞

ψ(x)

x
− θ(x)

x
= 0, which implies ψ(x) ∼ x ⇐⇒ θ(x) ∼ x

2



Lemma 1.2. For x ≥ 2, θ(x) = O(x)

Proof. First of all, we observe that for n ≥ 2 the product of all primes between n
and 2n is a factor of

(
2n
n

)
. Hence, as

(
2n
n

)
≤ 22n , we obtain:∏

n < p ≤ 2n

p ≤ 22n =⇒
∑

n < p ≤ 2n

log(p) ≤ 2n log(2)

So we get the following list of inequalities:

θ(2n)− θ(n) ≤ 2n log(2)

θ(n)− θ
(n

2

)
≤ n log(2)

θ
(n

2

)
− θ

(n
4

)
≤ n

2
log(2)

...

Adding all of them, we obtain : θ(2n) ≤ [2n+ n+ n
2

+ · · · ] log(2) .
So, θ(2n) ≤ 4n log(2) or θ(n) ≤ 2 log(2)n. Thus, θ(x) = O(x).

Theorem 1.2. θ(x) ∼ x ⇐⇒ π(x) ∼ x
log(x)

Proof. We define two sequence an and bn such that

an =

{
1 if n is prime
0 otherwise

=⇒
∑
n≤x

an = π(x)

bn = log(n)an =⇒
∑
n≤x

bn = θ(x)

Then, if we take f(t) = 1
log(t)

, we will have (by Abel’s summation1):∑
n≤x

b(n)f(n) = B(x)f(x)−
∫ x

2

B(t)f ′(t)dt, where B(x) =
∑
n≤x

bn

On substituting, we get:

π(x) =
θ(x)

log(x)
+

∫ x

2

θ(t)

t log2 t
dt

=⇒ π(x) log(x)

x
=
θ(x)

x
+

log(x)

x

∫ x

2

θ(t)

t log2 t
dt

1For any arithmetical function a(n) let A(x) =
∑
n≤x a(n) where A(x) = 0 if x < 1. If f has a continuous

derivative on the interval [y, x], where 0 < y < x, then we have∑
y<n≤x

a(n)f(n) = A(x)f(x)−A(y)f(y)−
∫ x

y
A(t)f ′(t)dt
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Now, by Lemma 1.2, we have the following result:∫ x

2

θ(t)

t log2 t
dt = O

(∫ x

2

t

t log2 t
dt

)
= O

(∫ √x
2

1

log2 2
dt+

∫ x

√
x

1

log2√x
dt

)

= O

( √
x

log2 2
+
x−
√
x

log2√x

)

So:

log(x)

x

∫ x

2

θ(t)

t log2 t
dt = O

 log(x)
√
x log2 2

+
4
[
1− 1√

x

]
log(x)


Hence, we observe:

lim
x→∞

π(x) log(x)

x
= lim

x→∞

θ(x)

x
, i.e. θ(x) ∼ x ⇐⇒ π(x) ∼ x

log(x)

Thus, we have established this beautiful three-way asymptotic equivalence :

ψ(x) ∼ x ⇐⇒ θ(x) ∼ x ⇐⇒ π(x) ∼ x

log(x)

Lemma 1.3. Let an be a nonnegative sequence and define:

A(x) =
∑
n≤x

an and A1(x) =

∫ x

1

A(t)dt

Then, ∑
n≤x

(x− n)an = A1(x)

and if A1(x) ∼ Lxc as x→∞ for some c > 0 and L > 0, then
A(x) ∼ cLxc−1 as x→∞.

Proof. We know that by Abel summation, for any function f(n),∑
n≤x

anf(n) = A(x)f(x)−
∫ x

1

A(t)f ′(t)dt

Taking f(n) = n, we get:∑
n≤x

nan = xA(x)−
∫ x

1

A(t)dt =⇒
∑
n≤x

(x− n)an = A1(x)
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Now, we choose arbitrary constants 0 < α < 1 and β > 1, and observe:

A1(βx)− A1(x) =

∫ βx

x

A(t)dt ≥ (βx− x)A(x)

=⇒ 1

β − 1

{
A1(βx)

xc
− A1(x)

xc

}
≥ A(x)

xc−1

and

A1(x)− A1(αx) =

∫ x

αx

A(t)dt ≤ (x− αx)A(x)

=⇒ 1

1− α

{
A1(x)

xc
− A1(αx)

xc

}
≤ A(x)

xc−1

So, as x→∞, we obtain:

lim sup
x→∞

A(x)

xc−1
= L

βc − 1

β − 1

lim inf
x→∞

A(x)

xc−1
= L

1− αc

1− α

Now, if α→ 1− and β → 1+, then,

lim sup
x→∞

A(x)

xc−1
= L lim

β→1+

βc − 1c

β − 1
= L

[
d(βc)

dβ

]
β=1

= Lc

lim inf
x→∞

A(x)

xc−1
= L lim

α→1−

1c − αc

1− α
= L

[
d(αc)

dα

]
α=1

= Lc

Hence,

lim
x→∞

A(x)

xc−1
= Lc or A1(x) ∼ Lxc =⇒ A(x) ∼ cLxc−1

.

Theorem 1.3. Define a smoothing function

ψ1(x) =

∫ x

1

ψ(t)dt.

Then, ψ1(x) ∼ x2

2
=⇒ ψ(x) ∼ x

Proof. Let an = Λ(n) in Lemma 1.3. Then we get ψ1(x) ∼ x2

2
=⇒ ψ(x) ∼ x

5



2 Representation as a contour integral

Lemma 2.1. Let z ∈ C. If c > 0 and u > 0, then for every k ∈ N, we have:

1

2πi

∫ c+∞i

c−∞i

u−z

z(z + 1) · · · (z + k)
dz =

{
1
k!

(1− u)k if 0 < u ≤ 1
0 if u > 1

,

the integral being absolutely convergent.

Proof. We first define two different contours for 0 < u ≤ 1 and u > 1 as follows.
Here, R > 2k.

0 < u ≤ 1 u > 1

Now, if |z| = R, then for integers 1 ≤ n ≤ k, we shall have
|z + n| ≥ |z| − n = R− n ≥ R− k ≥ R− R

2
=⇒ 1

|z+n| ≤
2
R

.

Let z = x + iy. We observe that given our contours, if 0 < u ≤ 1, then x ≤ c
and if u > 1, then x ≥ c. So, in both cases, u−x ≤ u−c. Hence :∣∣∣∣ u−z

z(z + 1) · · · (z + k)

∣∣∣∣ ≤ |u−x|
|z||z + 1| · · · |z + k|

∵ |u−iy| = 1

≤ 2ku−c

Rk+1

Thus, if we integrate this expression over any circular arc, the integral will be

dominated by the expression 2πR 2ku−c

Rk+1 = O(R−k) and this tends to 0 as R→∞.
So, if CR is any of the two contours shown in the figure above, we shall have :∫ c+∞i

c−∞i

u−z

z(z + 1) · · · (z + k)
dz =

∫
CR

u−z

z(z + 1) · · · (z + k)
dz as R→∞

Now we observe that the integrand has simple poles at integers 0,−1,−2, · · · ,−k
and all these points lie outside the contour for u > 1 and inside the contour for
0 < u ≤ 1. Hence, if u > 1, Cauchy’s integral theorem yields :

1

2πi

∫ c+∞i

c−∞i

u−z

z(z + 1) · · · (z + k)
dz = 0
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But if we have 0 < u ≤ 1, then Cauchy’s residue theorem yields:

1

2πi

∫ c+∞i

c−∞i

u−z

z(z + 1) · · · (z + k)
dz =

k∑
n=0

Res

(
u−zΓ(z)

Γ(z + k + 1)
,−n

)
Now, we recall that if a function F has a simple pole at z0 and G is analytic at z0,
then Res(F ·G, z0) = G(z0) · Res(F, z0). So,

Res

(
u−zΓ(z)

Γ(z + k + 1)
,−n

)
=

[
u−z

Γ(z + k + 1)

]
z=−n

· Res(Γ(z),−n)

=
un

Γ(k + 1− n)
· (−1)n

n!

Thus,

1

2πi

∫ c+∞i

c−∞i

u−z

z(z + 1) · · · (z + k)
dz =

k∑
n=0

(−u)n

(k − n)!n!

=
1

k!

k∑
n=0

(
k

n

)
(−u)n

=
1

k!
(1− u)k

Hence proved:
If c > 0 and u > 0, then for every k ∈ N, we have:

1

2πi

∫ c+∞i

c−∞i

u−z

z(z + 1) · · · (z + k)
dz =

{
1
k!

(1− u)k if 0 < u ≤ 1
0 if u > 1

,

the integral being absolutely convergent.

Lemma 2.2. For s ∈ C with Re(s) > 1, the Riemann Zeta function is defined as:

ζ(s) =
∞∑
n=1

1

ns
.

Then,

ζ ′(s)

ζ(s)
= −

∞∑
n=1

Λ(n)

ns
where Λ(n) =

{
log(p) if n = pα;α ∈ N
0 otherwise

Proof. We have

ζ(s) = 1 +
1

2s
+

1

3s
+

1

4s
+ · · ·
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=⇒
(

1− 1

2s

)
ζ(s) = 1 +

1

3s
+

1

5s
+

1

7s
+ · · ·

=⇒
(

1− 1

3s

)(
1− 1

2s

)
ζ(s) = 1 +

1

5s
+

1

7s
+

1

11s
+ · · ·

=⇒ · · ·
(

1− 1

5s

)(
1− 1

3s

)(
1− 1

2s

)
ζ(s) = 1

This holds true because we know that
∑∣∣∣ 1ps ∣∣∣ converges uniformly for σ > 1 and

hence the infinite product
∏(

1− 1
ps

)
also converges absolutely. Besides, the

product does not converge to zero and hence we can write

1

ζ(s)
=

∏
p prime

(
1− 1

ps

)
= 1 +

∑
n prime

(
− 1

ns

)
+

∑
n = p1p2

(
− 1

ps1
· − 1

ps2

)
+ · · ·

=
∞∑
n=1

µ(n)

ns

where µ(n) =

 1 if n = 1
(−1)k if a1 = a2 = · · · = ak = 1
0 otherwise

for n = pa11 p
a2
2 · · · p

ak
k

Now Weierstrass’s Theorem for Series states that if the functions f1(z), f2(z), f3(z), · · ·
are holomorphic in an open set D and F (z) =

∑∞
i=1 fi(z) converges uniformly on

every closed and bounded subset of D, then F (z) is holomorphic on D and for all

k ≥ 1, the series
∑∞

i=1 f
(k)
i (z) converges on every closed and bounded subset of D

with limit F (k)(z). So, as 1
ns

is holomorphic if σ > 1 ∀ n ∈ N and the function∑∞
n=1

1
ns

converges uniformly for σ > 1, we can write:

ζ ′(s) =
∞∑
n=1

d

ds

1

ns
= −

∞∑
n=1

log(n)

ns
.

Now we know that for two sequences a(n) and b(n),

∞∑
n=1

a(n)

ns

∞∑
n=1

b(n)

ns
=
∞∑
n=1

{∑
d|n a(d)b(n

d
)

ns

}
.

Hence,

ζ ′(s)

ζ(s)
= −

∞∑
n=1

{∑
d|n µ(d) log(n

d
)

ns

}
=
∞∑
n=1

Λ(n)

ns
.
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Theorem 2.1. If c > 1 and x ≥ 1, we have:

ψ1(x)

x2
=

1

2πi

∫ c+∞i

c−∞i

xs−1

s(s+ 1)

(
−ζ
′(s)

ζ(s)

)
ds

Proof. By Lemma 1.3, we know that :

ψ1(x) =
∑
n≤x

(x− n) · Λ(n)

=⇒ ψ1(x)

x
=
∑
n≤x

(
1− n

x

)
· Λ(n)

And, if we take u = n
x

and k = 1, then Lemma 2.1 gives us :

1

2πi

∫ c+∞i

c−∞i

(x/n)s

s(s+ 1)
ds =

{
(1− n

x
) if n ≤ x

0 if n > x
, for c > 0

So,
∞∑
n=1

[
1

2πi

∫ c+∞i

c−∞i

Λ(n) · (x/n)s

s(s+ 1)
ds

]
=
∑
n≤x

(
1− n

x

)
· Λ(n) =

ψ1(x)

x

Now, we note that the partial sums satisfy:

N∑
k=1

∣∣∣∣∫ c+∞i

c−∞i

Λ(k) · (x/k)s

s(s+ 1)
ds

∣∣∣∣ =
N∑
k=1

∫ c+∞i

c−∞i

Λ(k) · (x/k)c

|s||s+ 1|
ds

=
N∑
k=1

Λ(k)

kc

∫ c+∞i

c−∞i

xc

|s||s+ 1|
ds ≤ A

N∑
k=1

Λ(k)

kc

where A is a constant. So, the term

∞∑
n=1

[
1

2πi

∫ c+∞i

c−∞i

Λ(n) · (x/n)s

s(s+ 1)
ds

]
converges absolutely and hence the summation and integral can be interchnaged.
Hence,

ψ1(x)

x
=

1

2πi

∫ c+∞i

c−∞i

xs

s(s+ 1)

∞∑
n=1

Λ(n)

ns
ds for c > 0

Finally, by Lemma 2.2, we get:

ψ1(x)

x2
=

1

2πi

∫ c+∞i

c−∞i

xs−1

s(s+ 1)

(
−ζ
′(s)

ζ(s)

)
ds for c > 1
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3 Removal of the pole

Lemma 3.1. If a non-zero function f(s) has a pole of order k at s = a then the

quotient f ′(s)
f(s)

has a first order pole at s = a with residue −k.

Proof. As f(s) has a pole of order k at s = a, we can write f(s) = g(s)
(s−a)k where g

is analytic at a. Using the quotient rule, we get

f ′(s) =
(s− a)kg′(s)− k(s− a)k−1g(s)

(s− 1)2k

=
g′(s)

(s− a)k
− kg(s)

(s− a)k+1

=
g(s)

(s− 1)k

[
g′(s)

g(s)
− k

s− a

]
Therefore, f ′(s)

f(s)
= g′(s)

g(s)
− k

s−a . Since g(s) 6= 0 and is analytic, it follows that g′(s)
g(s)

is

analytic at s = a. Hence, f ′(s)
f(s)

has a first order pole at s = a and the residue is

given by :

Res

[
f ′(s)

f(s)
, s = a

]
= lim

s→a
(s− a)

f ′(s)

f(s)
= −k

.

Theorem 3.1. ζ′(s)
ζ(s)

has a first order pole at s = 1 with residue −1 and hence

− ζ′(s)
ζ(s)
− 1

s−1 is analytic at s = 1.

Proof. We define the Dirichlet Eta function as :

η(s) =
∞∑
n=1

(−1)n−1

ns
= 1− 1

2s
+

1

3s
− 1

4s
+ · · ·

for a complex number s with Re(s) > 0 and note that η(1) converges to log(2) by
the Maclaurian series expansion of log(1 + x). Now,

ζ(s)− η(s) =

(
1 +

1

2s
+

1

3s
+

1

4s
+ · · ·

)
−
(

1− 1

2s
+

1

3s
− 1

4s
+ · · ·

)
= 2

(
1

2s
+

1

4s
+

1

6s
+ · · ·

)
=

1

2s−1

(
1 +

1

2s
+

1

3s
+

1

4s
+ · · ·

)
=

1

2s−1
ζ(s)

10



Thus,

ζ(s) =
η(s)

1− 1
2s−1

and by this expression, ζ(s) has a first pole at s = 1. To find the residue, we
compute:

lim
s→1

(s− 1)ζ(s) = lim
s→1

(s− 1)η(s)

1− 1
2s−1

= η(1) lim
s→1

2s−1(s− 1)

2s−1 − 1

= log(2) lim
s→0

2s(s)

2s − 1

= log(2) · 1

log(2)

= 1.

Therefore ζ(s) has a residue of 1 at s = 1 and by the definition of the Riemann

zeta function, ζ(s) 6= 0 for Re(s) > 1. Hence Lemma 3.1 implies that ζ′(s)
ζ(s)

has a

first order pole at s = 1 with residue −1. So, ζ′(s)
ζ(s)
− −1

s−1 is analytic at s = 1. Thus,

−ζ
′(s)

ζ(s)
− 1

s− 1
is analytic at s = 1.

In Theorem 2.1, we proved that

ψ1(x)

x2
=

1

2πi

∫ c+∞i

c−∞i

xs−1

s(s+ 1)

(
−ζ
′(s)

ζ(s)

)
ds for c > 1.

Let g(s) = 1
s(s+1)

(
− ζ′(s)

ζ(s)

)
and s = c+ it. Then, it can be rewritten as :

ψ1(x)

x2
=
xc−1

2π

∫ +∞

−∞
g(c+ it)eit log(x)dt for c > 1

We want to prove ψ1(x)
x2
∼ 1

2
and so we let x → ∞. Now the Riemann-Lebesgue

lemma in the theory of Fourier series states that

lim
x→∞

∫ +∞

−∞
f(t)eitxdt = 0

if the integral
∫ +∞
−∞ |f(t)|dt converges.

11



But by Theorem 3.1, the term g(c+it) has a pole at s = 1, and so
∫ +∞
−∞ |g(c+it)|dt

doesn’t converge for c > 1. Thus, we will first subtract the pole at s = 1 from ζ′(s)
ζ(s)

.

We get the following theorem:

Theorem 3.2. If c > 1 and x ≥ 1 we have

ψ1(x)

x2
− 1

2

(
1− 1

x

)2

=
1

2πi

∫ c+∞i

c−∞i

xs−1

s(s+ 1)

(
−ζ
′(s)

ζ(s)
− 1

s− 1

)
ds

Proof. Let c > 0 and x ≥ 1. By Lemma 2.1 for k = 2 and u = 1/x, we have:

1

2πi

∫ c+∞i

c−∞i

xs

s(s+ 1)(s+ 2)
ds =

1

2

(
1− 1

x

)2

Repplacing s by s− 1 in the integral,

1

2

(
1− 1

x

)2

=
1

2πi

∫ c+∞i

c−∞i

xs−1

(s− 1)(s)(s+ 1)
ds for c > 1

We already had

ψ1(x)

x2
=

1

2πi

∫ c+∞i

c−∞i

xs−1

s(s+ 1)

(
−ζ
′(s)

ζ(s)

)
ds for c > 1.

So, for c > 1 and x ≥ 1,

ψ1(x)

x2
− 1

2

(
1− 1

x

)2

=
1

2πi

∫ c+∞i

c−∞i

xs−1

s(s+ 1)

(
−ζ
′(s)

ζ(s)
− 1

s− 1

)
ds

Now we let h(s) = 1
s(s+1)

(
− ζ′(s)

ζ(s)
− 1

s−1

)
and s = c+it. Then, it can be rewritten

as :
ψ1(x)

x2
− 1

2

(
1− 1

x

)2

=
xc−1

2π

∫ +∞

−∞
h(c+ it)eit log(x)dt for c > 1

If we let x → ∞, and show that
∫ +∞
−∞ |h(c + it)|dt converges then by Riemann

Lebesgue Lemma,
∫ +∞
−∞ h(c+ it)eit log(x)dt→ 0. But the term xc−1

2π
→∞ we get the

indeterminate form ∞ · 0.

To deal with this, we show that it is possible to replace c by 1 in

ψ1(x)

x2
− 1

2

(
1− 1

x

)2

=
1

2πi

∫ c+∞i

c−∞i

xs−1

s(s+ 1)

(
−ζ
′(s)

ζ(s)
− 1

s− 1

)
ds

and that the integral
∫ +∞
−∞ |h(1 + it)|dt converges.

This requires a detailed study of the Riemann Zeta function in the vicinity of
the line σ = 1 for s = σ + it.
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4 Riemann Zeta Function near σ = 1

Lemma 4.1. Let s = σ + it ∈ C. For any N ∈ N and σ > 0 we have:

ζ(s) =
N∑
n=1

1

ns
− s

∫ ∞
N

x− [x]

xs+1
dx+

N1−s

s− 1

Proof. Euler’s summation formula states that if f is smooth on [a, b], 0 < a < b,
then∑

y<n≤x

f(n) =

∫ x

y

f(t)dt+

∫ x

y

(t− [t])f ′(t)dt+ f(x)([x]− x)− f(y)([y]− y)

Taking f(n) = n−s, y = N and x→∞, we get for σ > 1:

ζ(s) =
∞∑
n=1

1

ns

=
N∑
n=1

1

ns
+
∑
n>N

1

ns

=
N∑
n=1

1

ns
+

∫ ∞
N

1

ts
dt+

∫ ∞
N

−s(t− [t])

ts+1
dt+ lim

x→∞

[x]− x
xs

− [N ]−N
N s

=
N∑
n=1

1

ns
+

[
t1−s

1− s

]∞
N

− s
∫ ∞
N

(t− [t])

ts+1
dt+ lim

x→∞

[x]− x
xs

=
N∑
n=1

1

ns
+
N1−s

s− 1
− s

∫ ∞
N

(t− [t])

ts+1
dt

So, we have proved that for σ > 1,

ζ(s) =
N∑
n=1

1

ns
− s

∫ ∞
N

x− [x]

xs+1
dx+

N1−s

s− 1

If 0 < σ ≤ 1, ∃ a δ > 0 such that σ ≥ δ and hence∫ ∞
N

(t− [t])

ts+1
dt ≤

∫ ∞
N

1

tδ+1
dt.

So, the integral
∫∞
N

(t−[t])
ts+1 dt converges uniformly for σ ≥ δ and hence represents an

analytic function in the half plane σ > 0. Therefore, by analytic continuation, for
σ > 0,

ζ(s) =
N∑
n=1

1

ns
− s

∫ ∞
N

x− [x]

xs+1
dx+

N1−s

s− 1
.
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Theorem 4.1. For every A > 0, there exists a constant M such that |ζ(s)| ≤
M log(t) with σ ≥ 1

2
satisfying σ > 1− A

log(t)
and t ≥ e.

Proof. If σ ≥ 2, we have

|ζ(s)| =

∣∣∣∣∣
∞∑
n=1

1

ns

∣∣∣∣∣ =
∞∑
n=1

1

|nσ+it|
=
∞∑
n=1

1

nσ
≤

∞∑
n=1

1

n2
= ζ(2)

and so |ζ(s)| ≤M log(t) holds trivially.

Therefore we assume σ < 2 and t ≥ e. We then have
|s| = |σ+it| ≤ |σ|+|t| < 2+t < 2t and |s−1| ≥ |(σ−1)+it| =

√
(σ − 1)2 + t2 ≥ t.

By Lemma 4.1, for any N ∈ N and σ > 0 we have:

ζ(s) =
N∑
n=1

1

ns
− s

∫ ∞
N

x− [x]

xs+1
dx+

N1−s

s− 1
.

Then

|ζ(s)| ≤

∣∣∣∣∣
N∑
n=1

1

ns

∣∣∣∣∣+

∣∣∣∣s∫ ∞
N

x− [x]

xs+1
dx

∣∣∣∣+

∣∣∣∣N1−s

s− 1

∣∣∣∣
≤

N∑
n=1

1

nσ
+ 2t

∫ ∞
N

1

xσ+1
dx+

N1−σ

t

=
N∑
n=1

1

nσ
+

2t

σNσ
+
N1−σ

t

We take N = [t] and so log(n) ≤ log(t) if n ≤ N . Besides, we also choose σ ≥ 1
2

satisfying σ > 1− A
log(t)

and t ≥ e. So,

1

nσ
=
n1−σ

n
<

1

n
eA

log(n)
log(t) ≤ 1

n
eA = O

(
1

n

)
.

Now as N ≤ t < N + 1 and σ ≥ 1
2
, we get

2t

σNσ
≤ 2(N + 1)

1
2
N

= O

(
1 +

1

N

)
= O(1) and

N1−σ

t
=
N

t

1

Nσ
= O

(
1

N

)
= O(1).

Hence

|ζ(s)| ≤
N∑
n=1

1

nσ
+O(1) = O

(
N∑
n=1

1

n

)
+O(1) = O(log(N)) +O(1) = O(log(t)).

So, this implies that for every A > 0, there exists a constant M such that |ζ(s)| ≤
M log(t) with σ ≥ 1

2
satisfying σ > 1− A

log(t)
and t ≥ e.

14



Theorem 4.2. For every A > 0, there exists a constant M such that |ζ ′(s)| ≤
M log2(t) with σ ≥ 1

2
satisfying σ > 1− A

log(t)
and t ≥ e.

Proof. If σ ≥ 2, we have

|ζ ′(s)| =

∣∣∣∣∣
∞∑
n=1

− log(n)

ns

∣∣∣∣∣ =
∞∑
n=1

log(n)

|nσ+it|
=
∞∑
n=1

log(n)

nσ
≤

∞∑
n=1

log(n)

n2
= |ζ ′(2)|

and so |ζ ′(s)| ≤ M log2(t) holds trivially. Therefore we assume σ < 2 and t ≥ e
and this gives us the inequalities |s| < 2t and |s− 1| ≥ t.

We had shown that for any N ∈ N and σ > 0,

ζ(s) =
N∑
n=1

1

ns
− s

∫ ∞
N

x− [x]

xs+1
dx+

N1−s

s− 1
.

This yields:

ζ ′(s) =−
N∑
n=1

log(n)

ns
+ s

∫ ∞
N

(x− [x]) log(x)

xs+1
dx

−
∫ ∞
N

x− [x]

xs+1
dx− N1−s log(N)

s− 1
− N1−s

(s− 1)2
.

So,

|ζ ′(s)| ≤

∣∣∣∣∣
N∑
n=1

log(n)

ns

∣∣∣∣∣+

∣∣∣∣s ∫ ∞
N

(x− [x]) log(x)

xs+1
dx

∣∣∣∣+

∣∣∣∣∫ ∞
N

x− [x]

xs+1
dx

∣∣∣∣
+

∣∣∣∣N1−s log(N)

s− 1

∣∣∣∣+

∣∣∣∣ N1−s

(s− 1)2

∣∣∣∣
≤ log(N)

N∑
n=1

1

nσ
+ 2t

∫ ∞
N

log(x)

xσ+1
dx+

∫ ∞
N

1

xσ+1
dx+

N1−σ log(N)

t
+
N1−σ

t2

= log(N)
N∑
n=1

1

nσ
+ 2t

(
log(N)

σNσ
+

1

σ2Nσ

)
+

1

σNσ
+
N1−σ log(N)

t
+
N1−σ

t2

We take N = [t] and so log(n) ≤ log(t) if n ≤ N . Besides, we also choose σ ≥ 1
2

satisfying σ > 1− A
log(t)

and t ≥ e. So, we get the relation 1
nσ

= O
(
1
n

)
. Thus
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|ζ ′(s)| = O

(
log(N)

N∑
n=1

1

n

)
+O

(
t log(N)

σN

)
+O

(
t

σ2N

)
+O

(
1

σN

)
+O

(
N1−σ log(N)

t

)
+O

(
N1−σ

t2

)
= O

(
log2(N)

)
+O (log(N)) +O(1)

= O
(
log2(t)

)
So. this implies that for every A > 0, there exists a constant M such that
|ζ ′(s)| ≤M log2(t) with σ ≥ 1

2
satisfying σ > 1− A

log(t)
and t ≥ e.

Lemma 4.2. If σ > 1 we have ζ3(σ) |ζ(σ + it)|4 |ζ(σ + 2it)| ≥ 1.

Proof. By Lemma 2.2, we have that if σ > 1,

ζ ′(s)

ζ(s)
= −

∞∑
n=1

Λ(n)

ns
.

Hence for σ > 1

log(ζ(s)) =

∫
ζ ′(s)

ζ(s)
ds

=

∫ (
−
∞∑
n=2

Λ(n)

ns

)
ds

= −
∞∑
n=2

∫
Λ(n)

ns
ds ∵

∞∑
n=2

Λ(n)

ns
converges uniformly for σ > 0

=
∞∑
n=2

Λ(n)

ns log(n)
+ C where C is a constant.

So, we get that ζ(s) = eG(s) where G(s) =
∞∑
n=2

Λ(n)

ns log(n)
+C for some constant C.

Thus, if σ → ∞, then G(s) → C or ζ(s) → eC . But we know that ζ(s) → 1 as
σ →∞. This implies eC = 1 or C = 0.
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So, we have established that ζ(s) = eG(s) where

G(s) =
∞∑
n=2

Λ(n)

ns log(n)
=
∑
p

∞∑
m=1

log(p)

(pm)s log(pm)
=
∑
p

∞∑
m=1

1

mpms
=
∑
p

∞∑
m=1

1

mpmσeimt log(p)
.

This implies

|ζ(s)| = exp

(∑
p

∞∑
m=1

e−imt log(p)

mpmσ

)
= exp

(∑
p

∞∑
m=1

cos(mt log(p))

mpmσ

)
.

We apply this formula repeatedly for s = σ, s = σ+ it and s = σ+ 2it, and obtain

ζ3(σ) |ζ(σ + it)|4 |ζ(σ + 2it)|

= exp

(∑
p

∞∑
m=1

3

mpmσ

)
· exp

(∑
p

∞∑
m=1

4 cos(mt log(p))

mpmσ

)
· exp

(∑
p

∞∑
m=1

cos(2mt log(p))

mpmσ

)

= exp

(∑
p

∞∑
m=1

3 + 4 cos(mt log(p)) + cos(2mt log(p))

mpmσ

)
But we have 3+4 cos(θ)+cos(2θ) = 3+4 cos(θ)+2 cos2(θ)−1 = 2(1+cos(θ)2 ≥ 0.
Therefore each term in the infinite series is nonnegative and hence

ζ3(σ) |ζ(σ + it)|4 |ζ(σ + 2it)| ≥ 1.

Theorem 4.3. ζ(1 + it) 6= 0 ∀ t ∈ R
Proof. If t = 0, the relation is trivial and therefore we assiume t 6= 0. Lemma 4.2
yields that if σ > 1, then ζ3(σ) |ζ(σ + it)|4 |ζ(σ + 2it)| ≥ 1 or

{(σ − 1)ζ(σ)}3
∣∣∣∣ζ(σ + it)

σ − 1

∣∣∣∣4 | |ζ(σ + 2it)| ≥ 1

σ − 1
.

Now if we let σ → 1+, we will have (σ − 1)ζ(σ) → 1 since ζ(s) has residue 1 at
the pole s = 1. Besides ζ(σ + 2it)→ ζ(1 + 2it). Now if we assume that for some
t0 6= 0, we have ζ(1 + it0) = 0, then

lim
σ→1+

∣∣∣∣ζ(σ + it0)

σ − 1

∣∣∣∣4 = lim
σ→1+

∣∣∣∣ζ(σ + it0)− ζ(1 + it0)

σ − 1

∣∣∣∣4 = |ζ ′(1 + it0)|4.

Hence we obtain |ζ ′(1 + it0)|4|ζ(1 + 2it0)| ≥ limσ→1+
1

σ−1 , which tends to +∞.
So we arrive a contradiction, i.e. our assumption was wrong. Thus proved:
ζ(1 + it) 6= 0 ∀ t ∈ R.
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Theorem 4.4. There is a constant M > 0 such that
∣∣∣ 1
ζ(s)

∣∣∣ < M log7(t) and∣∣∣ ζ′(s)ζ(s)

∣∣∣ < M log9(t) whenever σ ≥ 1 and t ≥ e.

Proof. For σ ≥ 2 we have
∣∣∣ 1
ζ(s)

∣∣∣ =
∣∣∣∑∞n=1

µ(n)
ns

∣∣∣ ≤ ∑∞n=1
1
n2 = ζ(2) and so

∣∣∣ 1
ζ(s)

∣∣∣ <
M log7(t) trivially. Let 1 < σ ≤ 2 and t ≥ e. By Lemma 4.2, we have

ζ3(σ) |ζ(σ + it)|4 |ζ(σ + 2it)| ≥ 1 or
1

|ζ(σ + it)|
≤ ζ3/4(σ)|ζ(σ + 2it)|1/4

Now as (σ − 1)ζ(σ) is bounded in the interval 1 ≤ σ ≤ 2, there exists an absolute
constant M such that (σ − 1)ζ(σ) ≤M and hence ζ(σ) ≤ M

σ−1 .

Also, by Theorem 4.1, |ζ(σ + 2it)| = O(log(t)) if 1 ≤ σ ≤ 2. Hence, there

exists an absolute constant A such that 1
|ζ(σ+it)| ≤

A log1/4(t)

(σ−1)3/4 .

Therefore, for some constant B > 0 we have

|ζ(σ + it)| > B(σ − 1)3/4

log1/4(t)
, if 1 < σ ≤ 2 and t ≥ e.

We also note that this inequality holds trivially when σ = 1. Hence, we have

established that for 1 ≤ σ ≤ 2 and t ≥ e, we have |ζ(σ + it)| > B(σ−1)3/4

log1/4(t)
.

Now, assume that 1 ≤ σ ≤ 2 and t ≥ e and let α be any real satisfying 1 < α < 2.
Then either 1 ≤ σ ≤ α < 2 or 1 < α ≤ σ ≤ 2.

If 1 ≤ σ ≤ α < 2, t ≥ e, then Theorem 1.8 yields that for some constant K1 > 0,

|ζ(α + it)− ζ(σ + it)| ≤
∫ α

σ

|ζ ′(u+ it)|du ≤ (α− 1)K1 log2(t).

Hence, by triangle inequality,

|ζ(σ + it)| ≥ |ζ(α + it)| − |ζ(σ + it)− ζ(α + it)|
≥ |ζ(α + it)| − (α− 1)K1 log2(t)

>
B(α− 1)3/4

log1/4(t)
− (α− 1)K1 log2(t)

And if 1 < α ≤ σ ≤ 2, then t ≥ e, then

|ζ(σ + it)| > B(σ − 1)3/4

log1/4(t)
≥ B(α− 1)3/4

log1/4(t)
≥ B(α− 1)3/4

log1/4(t)
− (α− 1)K1 log2(t).
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Combining both we conclude that if we have 1 ≤ σ ≤ 2 and t ≥ e, then for
every α ∈ (1, 2), there exists some constant K > 0 such that

|ζ(σ + it)| ≥ B(α− 1)3/4

log1/4(t)
− (α− 1)K log2(t)

If B < 2K, let t0 = e(
B
2K )

4/9

. Then we choose α = 1 +
(
B
2K

)4 1
log9(t)

and notice that

1 < α < 2 for all t > t0. And since t0 < e, we will have 1 < α < 2 for all t ≥ e. So
we can substitute this value of α in the inequality to obtain:

|ζ(σ + it)| ≥
B
((

B
2K

)4 1
log9(t)

)3/4
log1/4(t)

−
(
B

2K

)4
1

log9(t)
K log2(t)

≥ B4

8K3

1

log7(t)
− B4

16K3

1

log7(t)

=
B4

16K3

1

log7(t)
=

C

log7(t)
where C > 0

And if B ≥ 2K, we choose α = 1 + 1
2 log9(t)

to have 1 < α < 2 for all t ≥ e. Upon

substitution we get:

|ζ(σ + it)| ≥
B
(

1
2 log9(t)

)3/4
log1/4(t)

− 1

2 log9(t)
K log2(t)

≥ B

23/4

1

log7(t)
− K

2

1

log7(t)

=
1

23/4

(
B − K

21/4

)
1

log7(t)
=

C ′

log7(t)
where C ′ > 0

So, we have established that there exists a constant M > 0 such that
∣∣∣ 1
ζ(s)

∣∣∣ <
M log7(t) whenever 1 ≤ σ ≤ 2 and t ≥ e. Previously we had showed that this also
holds for σ ≥ 2. Hence we can say that there exists a constant M > 0 such that∣∣∣ 1
ζ(s)

∣∣∣ < M log7(t) whenever σ > 1 and t ≥ e.

Now by Theorem 4.2, there exists another constant N such that |ζ ′(s)| ≤ N log2(t)
whenever σ ≥ 1 and t ≥ e. So, we can have a positive constant P = MN such

that ζ′(s)
ζ(s)

< P log9(t).

Thus proved:
∣∣∣ 1
ζ(s)

∣∣∣ = O(log7(t)) and
∣∣∣ ζ′(s)ζ(s)

∣∣∣ = O(log9(t)) whenever σ ≥ 1 and

t ≥ e.
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5 Revisiting the contour integral

Theorem 5.1. For x ≥ 1 we have

ψ1(x)

x2
− 1

2

(
1− 1

x

)2

=
1

2π

∫ +∞

−∞
h(1 + it)eit log(x)dt

where the integral
∫ +∞
−∞ |h(1 + it)|dt converges.

Proof. In Theorem 3.2, we had proved that if c > 1 and x ≥ 1 we have

ψ1(x)

x2
− 1

2

(
1− 1

x

)2

=
1

2πi

∫ c+∞i

c−∞i
xs−1h(s)ds

where h(s) = 1
s(s+1)

(
− ζ′(s)

ζ(s)
− 1

s−1

)
We now consider the following rectangular contour R on the complex plane.

Now as the term xs−1h(s) is analytic inside and on R, Cauchy’s theorem gives∫
R
xs−1h(s) = 0. So,∫ c

1

xσ−1−iTh(σ−iT )dσ+

∫ +T

−T
xc−1+ith(c+it)dt+

∫ 1

c

xσ−1+iTh(σ+iT )dσ+

∫ −T
+T

xith(1+it)dt = 0

or∫ c

1

xσ−1−iTh(σ−iT )dσ+

∫ +T

−T
xc−1+ith(c+it)dt =

∫ c

1

xσ−1+iTh(σ+iT )dσ+

∫ +T

−T
xith(1+it)dt
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Now we note that for s = σ + iT and for s = σ − iT ,

|h(s)| ≤
∣∣∣∣ 1

s(s+ 1)

∣∣∣∣ · ∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣+

∣∣∣∣ 1

(s− 1)s(s+ 1)

∣∣∣∣ ≤ 1

T 2

∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣+
1

T 3

And so by Theorem 4.4, if T ≥ e, |h(s)| = O
(

log9(T )
T 2

)
+ O

(
1
T 3

)
= O

(
log9(T )
T 2

)
.

Hence∫ c

1

xσ−1−iTh(σ − iT )dσ = O

(∫ c

1

xc−1
M log9(T )

T 2

)
= O

(
(c− 1)xc−1

M log9(T )

T 2

)
and∫ c

1

xσ−1+iTh(σ+ iT )dσ = O

(∫ c

1

xc−1
M log9(T )

T 2

)
= O

(
(c− 1)xc−1

M log9(T )

T 2

)
.

Therefore, as T →∞ these integrals tend to 0. Hence we can write∫ +∞

−∞
xc−1+ith(c+ it)dt =

∫ +∞

−∞
xith(1 + it)dt.

And therefore,

ψ1(x)

x2
− 1

2

(
1− 1

x

)2

=
1

2πi

∫ c+∞i

c−∞i
xs−1h(s)ds

=
1

2πi

∫ +∞

−∞
xith(1 + it)dt

=
1

2πi

∫ +∞

−∞
eit log(x)h(1 + it)dt

Besides, |h(1 + it)| = O
(
M log9(t)

t2

)
and as∫ +∞

−∞
|h(1 + it)|dt =

∫ −e
−∞
|h(1 + it)|dt+

∫ +e

−e
|h(1 + it)|dt+

∫ +∞

+e

|h(1 + it)|dt,

the integral
∫ +∞
−∞ |h(1 + it)|dt converges.
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Theorem 5.2. For x ≥ 1, ψ1(x) ∼ x2

2
. This implies that π(x) ∼ x

log(x)
and hence

the Prime Number Theorem is proved.

Proof. In Theorem 5.1, we proved for x ≥ 1 we have

ψ1(x)

x2
− 1

2

(
1− 1

x

)2

=
1

2π

∫ +∞

−∞
h(1 + it)eit log(x)dt

where the integral
∫ +∞
−∞ |h(1 + it)|dt converges.

Now by Riemann Lebesgue Lemma,
∫ +∞
−∞ h(1 + it)eit log(x)dt converges to 0 as

x→ 0. Hence we get:

lim
x→∞

(
ψ1(x)

x2
− 1

2

(
1− 1

x

)2
)

= 0 or lim
x→∞

ψ1(x)

x2
=

1

2
.

This implies: ψ1(x) ∼ x2

2
. Now by Theorem 1.1, 1.2 and 1.3 we can say that

ψ1(x) ∼ x2

2
=⇒ ψ(x) ∼ x =⇒ φ(x) ∼ x =⇒ π(x) ∼ x

log(x)
.

Therefore the Prime Number Theorem is proved.

Conclusion
As elegant as this proof is, the method relies highly on complex analysis although
the statement of this theorem does not itself involve complex numbers. So in
search of a simpler proof, mathematicians Atle Selberg and Erdős published new,
independent elementary proofs of the prime number theorem in 1948 using proper-
ties of logarithms. These proofs enticed other mathematicians to consider similar
methods for number theory conjectures previously considered too profound for
such seemingly simple methods. Many exciting results followed, including Helmut
Maier’s 1985 elementary proof showing unexpected irregularities in the distribu-
tion of primes. Then in 1980, Newman gave a shorter proof that provided a much
simpler link between the zeta function and the prime number theorem. So to sum
up, the Prime Number Theorem is one of the most interesting gems of number the-
ory and mathematicians may never stop searching for new and more illuminating
paths to the prime number theorem.
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ABSTRACT

An Alternating Sign Matrix (ASM) is a square matrix consisting of 0’s, 1’s and ´1’s such
that the entries in each row and each column sum to 1 and the nonzero entries in each row
and each column alternate in sign. They arise naturally in the evaluation of λ-determinants,
which are a generalisation of determinants obtained by modifying the Dodgson algorithm
for determinant evaluation. Just as regular determinants may be expressed as a sum over
permutation matrices, these λ-determinants can be expressed as a sum over alternating sign
matrices.

These generalizations of permutation matrices have connections with various combinatorical
objects. This report details the topics covered over the course of SRFP 2021, in a guided study
of concepts in algebraic combinatorics, from the perspective of alternating sign matrices.
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1. Introduction

Definition 1.1. An alternating sign matrix is a square matrix consisting of 0’s, 1’s and ´1’s
such that the entries in each row and each column sum to 1 and the nonzero entries in each
row and each column alternate in sign.

Example 1.2.
¨

˚

˚

˝

0 0 1 0
1 0 0 0
0 1 ´1 1
0 0 1 0

˛

‹

‹

‚

1.1. The ASM Conjecture. Let An the number of nˆn alternating sign matrices, and let
An,k denote the number of nˆn ASMs such that the p1, kqth entry is 1. D.Robbins, H.Rumsey,
and W. Mills discovered that dividing the set of n ˆ n ASMs into classes according to the
position of 1 in the first row results in a Pascal’s triangle-like pattern:

Figure 1. Number of ASMs of
order n such that a1,k “ 1

Figure 2. Ratios of adjacent
terms from Figure 1

They also found that ratios of horizontally adjacent entries, themselves form a pattern (Fig
2). The nth row starts with 2{pn ` 1q and ends with pn ` 1q{2. The striking observation is
that each ratio appears to arise from the two ratios diagonally above, by adding numerators
and adding denominators. This led to the following conjecture:

Conjecture 1.3. (The refined ASM conjecture) For 1 ď k ă n,

An,k
An,k`1

“

`

n´2
k´1

˘

`
`

n´1
k´1

˘

`

n´2
n´k´1

˘

`
`

n´1
n´k´1

˘ “
kp2n´ k ´ 1q

pn´ kqpn` k ´ 1q

Mills, Robbins and Rumsey also conjectured the formula for computing An. This was proven
by Doron Zeilberger (’96), and separately by Greg Kuperberg (’96).

Theorem 1.4. (The ASM theorem) The total number of nˆn alternating sign matrices
is

An “ An`1,1 “
n´1
ź

j“0

p3j ` 1q!

pn` jq!

1.2. Objects enumerated by ASMs.

1.2.1. Descending plane partitions. A descending plane partition (DPP) of order n is a 2-
dimensional array of positive integers less than or equal to n such that the left-hand edges are
successively indented, there is weak decrease across rows and strict decrease down columns,
and the number of entries in each row is strictly less than the largest entry in that row.
George Andrews in 1979 conjectured a formula for counting DPPs of order n, which when
computed for small values of n, was found to equal the the number of ASMs of the same
order.
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1.2.2. Totally symmetric self-complementary plane partitions. A totally symmetric self- com-
plementary plane partition (TSSCPP) is a plane partition that is symmetric, cyclically sym-
metric, and equal to its complement. Andrews proved in 1994, that the number of TSSCPPs
in a 2nˆ 2nˆ 2n room is equal to the number of ASMs of order n.

1.2.3. Alternating sign triangles. An alternating sign triangle (AST) of order n is a triangular
array pai,jq1ďiďn, i´nďjďn´i with entries in t0,˘1u, such that all (i) row sums are 1, (ii) non-
zero entries alternate in each row and column, and (iii) the topmost non-zero entry in each
column is 1, if it exists. In 2020, A. Ayyer, R. E. Behrend, and I. Fischer showed that the
number of ASTs of order n is equal to the number of ASMs of the same order.

While An enumerates these objects, a bijection between any pair of these has not been found.

1.2.4. Aztec diamonds. For an ASM A of order n, let µpAq be the number of p´1q entries

in A. Then, a 2-enumeration of ASMs is
ř

2µpAq “ 2npn`1q{2. This is also the number of
domino tilings possible for an Aztec diamond if order n.

2. Dodgson Condensation (1866)

Dodgson condensation is an algorithmic technique to evaluate the determinant of an n ˆ n
matrix by iteratively computing 2 ˆ 2 determinants. The algorithm itself is an application
of the previously established Desnanot-Jacobi adjoint matrix theorem (1833). The definition
of the determinant may be generalised by modifying Dodgson’s algorithm in a specific way
to obtain λ-determinants (as defined further), the evaluation of which first gave rise to alter-
nating sign matrices.

Let M “ pmi,jq be an n ˆ n matrix. For S, T P rns ” t1, . . . , nu, let MS
T be the matrix

obtained by deleting the rows in S and columns in T from M . If S “ tiu and T “ tju, then

M j
i is the matrix that remains when the ith row and jth column of M are deleted.

Definition 2.1. The cofactor matrix MC of an nˆ n matrix M is defined as follows:

pMCqi,j “ p´1qi`j |M j
i |

Multiplying M by its cofactor matrix MC , we get for i “ j

pM ¨MCqi,i “

n
ÿ

k“1

Mi,kpM
Cqk,i “ p´1qi`1pmi,1|M

i
1| ´mi,2|M

i
2| ` . . .` p´1qn´1mi,n|M

i
n|

“ |M |

And for i ‰ j we get the determinant of the matrix with row i replaced with a duplicate of
row j, and hence

pM ¨MCqi,j “

n
ÿ

k“1

Mj,kpM
Cqk,i “ p´1qj`1pmj,1|M

i
1| ´mj,2|M

i
2| ` . . .` p´1qn´1mj,n|M

i
n|

“ 0

∴M ¨MC “

¨

˚

˚

˚

˚

˚

˝

|M | 0 0 ¨ ¨ ¨ 0
0 |M | 0 ¨ ¨ ¨ 0
0 0 |M | ¨ ¨ ¨ 0
...

...
...

. . .
...

0 0 0 ¨ ¨ ¨ |M |

˛

‹

‹

‹

‹

‹

‚
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ùñ |M | ¨ |MC | “ |M |n

ùñ |MC | “ |M |n´1

Considered in the polynomial ring Crm1,1,m1,2, . . . ,mn,ns where all ”m”s are treated as
formal variables.

Theorem 2.2. (Desnanot-Jacobi adjoint matrix theorem) If M is an n ˆ n matrix,
then

|M ||M1,n
1,n | “ |M

1
1 ||M

n
n | ´ |M

1
n||M

n
1 |

Proof. Starting with MC , replace the pi, jqth entry with δi,j (where δ is the Kronecker delta)
to obtain a new matrix M˚, and evaluate its determinant:

|M˚| “

∣∣∣∣∣∣∣∣∣∣∣∣∣

|M1
1 | 0 0 ¨ ¨ ¨ 0 p´1qn`1|Mn

1 |

´|M1
2 | 1 0 ¨ ¨ ¨ 0 p´1qn`2|Mn

2 |

|M1
3 | 0 0 ¨ ¨ ¨ 0 p´1qn`3|Mn

3 |
...

...
...

. . .
...

...
p´1qn|M1

n´2| 0 0 ¨ ¨ ¨ 1 ´|Mn
n´1|

p´1qn`1|M1
n| 0 0 ¨ ¨ ¨ 0 ´|Mn

n |

∣∣∣∣∣∣∣∣∣∣∣∣∣
“ |M1

1 ||M
n
n | ´ |M

1
n||M

n
1 | Multiplying M and M˚ and taking the determinant, we get

|M ¨M˚| “

∣∣∣∣∣∣∣∣∣∣∣

|M | m1,2 m1,3 ¨ ¨ ¨ 0
0 m2,2 m2,3 ¨ ¨ ¨ 0
0 m3,2 m3,3 ¨ ¨ ¨ 0
...

...
...

. . .
...

0 mn,2 mn,3 ¨ ¨ ¨ |M |

∣∣∣∣∣∣∣∣∣∣∣
“ |M |2|M

t1,nu
t1,nu |

Equating the determinants, we have shown

|M ||M
t1,nu
t1,nu | “ |M

1
1 ||M

n
n | ´ |M

1
n||M

n
1 |

�

Dodgson’s Algorithm
Dodgson realised that the Desnanot-Jacobi theorem could be expressed in the form of an
algorithm to compute the determinant of an nˆ n matrix:

|M | “
|M1

1 ||M
n
n | ´ |M

1
n||M

n
1 |

|M
t1,nu
t1,nu |

This definition of the determinant can be generalised as follows.

Definition 2.3. The λ-determinant of an nˆ n matrix is given by

|M |λ “
|M1

1 |λ|M
n
n |λ ` λ|M

1
n|λ|M

n
1 |λ

|M
t1,nu
t1,nu |λ

with |φ|λ “ λ, and |a|λ “ a.

Remark 2.4. |ai,j | is a Laurent polynomial of λ for any n.
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Theorem 2.5. (Robbins-Rumsey, ’86): Let M be an nˆ n matrix with entries ai,j ,An

the set of n ˆ n alternating sign matrices, IpBq the inversion number of B, and NpBq the
number of -1s in B. Then,

|M |λ “
ÿ

BPAn

λIpBqp1` λ´1qNpBq
n
ź

i,j“1

a
Bi,j
i,j

The alternating sign matrix conjecture was thus motivated by counting the number of sum-
mands in the above expression.

3. Plane Partitions

George Andrews in 1979 conjectured a formula for counting descending plane partitions (ref).
It was observed that the number of descending plane partitions of order n, was the same as the
number of ASMs of the same order. While numerical evidence suggests a bijection between
ASMs and DPPs, attempts to establish such a bijection have so far been unsuccessful.

To understand plane partitions, we first define partitions:

Definition 3.1. A partition λ of a non-negative integer n is a sequence pλ1, . . . , λkq P Nk
satisfying λ1 ď . . . ď λk and

ř

λi “ n

Partitions can be represented by their Young diagrams, where each part λi is represented by
the ith row of λi unit squares. Each row is left-justified:

Figure 3. Young diagrams of some partitions of 4

Definition 3.2. A plane partition is a rectangular array of non-negative integers π “

πpi, jqi,jě1 satisfying πi,j ě πi,j1, and πi,j ě πi`1,j .

Equivalently, a plane partition is an arrangement of unit cubes in a room, stacked against
one corner.

3.1. Generating function for plane partitions. MacMahon showed that the generating
function for plane partitions can be expressed as

8
ÿ

n“1

pppnqqn “
8
ź

k“1

1

p1´ qkqk

Let pppnq “number of plane partitions of n, and let |π| :“
ř

i,jě1
πi,j “ n.

Definition 3.3. A standard Young tableau (SYT) of a partition λ $ n is a filling of its Young
diagram with unique entries in rns such that the entries increase along each row from left to
right, and along each column from top to bottom.

Definition 3.4. The shape of an SYT is the partition λ, the Young diagram of which the
SYT is a filling of.
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Definition 3.5. For a cell c in the Young diagram of λ, let the hook of c be

Hpcq “ tcells to the right of c in its row and to the bottom of c in its columnu

Let

fλ “ No. of SYTs of shape λ,

hpcq “ |Hpcq|

then,

Theorem 3.6. (Hook-length formula, Frame-Robinson-Thrall, 1959): For any
partition λ $ n and c a cell in the Young Diagram of λ,

fλ “
n!

ś

c
hpcq

3.1.1. The Robinson-Schensted-Knuth (RSK) Algorithm.
There exists a bijection between pairs of SYTs pP,Qq of the same shape λ $ n and permu-
tations π P Sn. This can be proven using the Robinson-Schensted-Knuth (RSK) algorithm.

Definition 3.7. Define a near Young tableau (NYT) of a partition λ $ n as a filling of its
Young diagram with entries from an arbitrary set of integers, satisfying the same conditions
as an SYT.

Row Insertion : Let P “ pPi,jq be an NYT and k R P . Then we add k to P to obtain a new
NYT denoted P Ð K as follows:

(1) Let r be the least integer such that P1,r ą k. If no such r exists, add k to the end of
row 1 and call the tableau P Ð k

(2) If r exists, replace k1 “ P1,r by k, and call this process bumping. Then insert k1 in
row 2 like in (1)

(3) continue this way until we add a new element as the last element a (possibly empty)
row to obtain the NYT P Ð k

We use row insertion for the RSK algorithm as follows:

- Given π P Sn, write π “ pπ1, π2, . . . , πnq in one line notation
- We will inductively construct pairs of tableaux pP0, Q0q, pP1, Q1q, . . . , pPn, Qnq where
Pi, Qi have i cells @i, and shapepPiq “ shapepQiq
(1) Set pP0, Q0q “ pφ, φq
(2) Given pPi´1, Qi´1q, set Pi “ Pi´1 Ð πi. Then add i to Qi´1 so that shapepPiq “

shapepQiq. Then P “ Pn, Q “ Qn

Thus, P is the ”insertion tableau” created by successive row insertions of entries in π, and Q
is the ”recording tableau” which records the changes made to the insertion tableau, in each
implementation of the RSK algorithm.

Theorem 3.8. The RSK algorithm gives a bijection between Sn and the set of pairs pP,Qq
of SYT of the same shape λ $ n

This can be proven be defining the inverse, i.e, pP,Qq ÞÑ π. We can do this by going in
the backwards direction of the RSK algorithm by an ”inverse bumping” procedure and thus
constructing the permutation in reverse order.

Definition 3.9. A column-strict plane partition (CoSPP) is a plane partition in which the
non-zero entries decrease strictly along columns.

The shape sh(P) of a CoSPP P is the partition, the Young diagram of which it is a filling of.
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3.1.2. RSK’ algorithm. We now want to define an analog of the RSK algorithm to obtain a
bijection between rectangular matrices with non-negative entries, and pairs of CoSPPs. To
do this, we first define a new row insertion algorithm as follows:

Row Insertion : Given a CoSPP P “ pPi,jq, k ě 1, the CoSPP P Ð k is constructed as
follows:

(1) Let r be the smallest entry such that k ą P1,r. If no such r exists, append k to the
first row to obtain P Ð k

(2) If such an r does exist, replace k1 “ P1,r by k in the previously described ”bumping”
manner, and row insert k1 into row 2 in the same way

(3) continue this way until we add a new element as the last element a (possibly empty)row
to obtain the CoSPP P Ð k

Two line representation of a matrix : Each rectangular matrix A with non-negative integer
entries has a unique 2-line representation:

A “

ˆ

u1 u2 . . . un
v1 v2 . . . vn

˙

satisfying

a. u1 ě u2 ě . . . ě un
b. if i ă j and ui ă uj , then vi ě vj
c. no. of columns in A “

`

i
j

˘

“ aij in the two line representation of A

We use row insertion for the RSK’ algorithm as follows:

- Given an rˆs matrix A with non-negative integer entries, write A in two line notation
- We will inductively construct pairs of CoSPPs pP0, Q0q, pP1, Q1q, . . . , pPn, Qnq where
Pi, Qi have i cells @i, and shpPiq “ shpQiq
(1) Set pP0, Q0q “ pφ, φq
(2) At the ith stage given pPi´1, Qi´1q, set P “ Pi´1 Ð vi and add ui to Qi´1 such

that shpPiq “ shpQiq

Note that equal entries of Q are inserted from left to right.

Lemma 3.10. The correspondence A
RSK1
ÝÝÝÑ pP,Qq is a bijection from the set of rˆs matrices

with non-negative integer entries to the set of pairs of CoSPPs of the same shape such that
the largest part of P is at most s and the largest part of Q is at most r.

We can construct a single plane partition from a pair of CoSPPs.

Definition 3.11. Let λ be a partition with distinct parts (strict partition). Then, the strict
shape/ shifted diagram of λ is obtained by left-justifying the rows of its Young diagram in a
staircase shape.

Let λ, µ be strict partitions with lpλq “ λpµq, where lpλq “ no. of non-zero parts of λ.
Construct a new partition ρ ” ρpλ, µq by merging the strict shape of λ, and the conjugate of
the strict shape of µ along the staircase shaped diagonal. Merging thus consists of deleting
the lpλq leftmost cells in the shifted Young diagram of λ, and fitting the Young diagram of
the conjugate of µ along the staircase-shaped cavity appropriately, as shown.

7



Figure 4.

Definition 3.12. The rank of a partition λ is the largest j such that λj ě j

Lemma 3.13. The map pλ, µq ÞÑ ρpλ, µq is a bijection between pairs of strict partitions with
lpλq “ k and partitions with rank k. Then,

|ρ| “ |λ| ` |µ| ´ lpλq

Proof. If lpλq “ lpµq “ k, then merging takes place along the k leftmost cells of the shifted
Young diagram of λ to form ρ. Splitting ρ along the top left diagonal of length k, results in
the original two strict partitions, hence the merging process is a bijection between pairs of
strict partitions of length k, and partitions with rank k. Since merging requires the deletion
of lpλq leftmost cells and subsequent addition of lpµq cells, we get

|ρ| “ |λ| ` |µ| ´ lpλq

�

Given CoSPPs P,Q of the same shape, we can thus apply ρ to each column of P and Q to
form columns of a plane partition π ” πpP,Qq. Define the conjugate π1 of π as the partition
obtained by replacing the ith row of π by its conjugate.

Lemma 3.14. π is a plane partition

For a CoSPP P , let

|P | “
ÿ

Pi,j ,

µpP q “ no. of parts of P , and

maxpP q “ maxpPi,jq.

And for a plane partition π, let

|π| “
ÿ

πi,j ,

colpπq “ no. of columns of π, and

rowpπq “ no. of rows of π

Note that maxpP q “ maxpπq “ rowpπ1q, maxpQq “ rowpπq “ colpπ1q and |P |` |Q|´νpP q “
|π| “ |π1|.

Theorem 3.15. Let ppr,spnq denote the number of plane partitions of n with at most r rows
and s columns. Then,

ÿ

ně0

ppr,spnqq
n “

r
ź

i“1

s
ź

j“1

1

1´ qi`j´1

8



Proof. Let Arˆs be a matrix with entries in N. Perform the RSK’ algorithm on A to obtain a
pair of CoSPPs pP,Qq, and further obtain the corresponding plane partition πpAq “ πpP,Qq
by the previously described process.

In a given column in the the two-line representation of A, let i be the entry in the first row
and j be the entry in the second row. We know that each such column occurs ai,j times, and
inserts j in P and i in Q. Therefore, we have

|P | “
ÿ

i,j

ai,j ˚ j

maxpP q “ maxtj|ai,j ‰ 0u

and,

|Q| “
ÿ

i,j

ai,j ˚ i

maxpQq “ maxti|ai,j ‰ 0u

ùñ |πpAq| “ |P | ` |Q| ´ µpP q “
ÿ

i,j

ai,jpi` j ´ 1q

By definition, for π a plane partition with at most r rows and s columns, we have
ÿ

ně0

ppr,spnqq
n “

ÿ

π

q|π|

“
ÿ

Arˆs

q

r,s
ř

i,j
ai,jpi`j´1q

“

r
ź

i“1

s
ź

j“1

¨

˝

ÿ

ai,jě0

qai,jpi`j´1q

˛

‚

“

r
ź

i“1

s
ź

j“1

ˆ

1

1´ qi`j´1

˙

�

Let pprpnq “ number of plane partitions of n with at most r rows.

Corollary 3.16.
(1)

ř

ně0
pprpnqq

n “
ś

kě1

1
p1´qkqminpk,rq

(2)
ř

ně0
pppnqqn “

ś

kě1

1
p1´qkqk

The proof follows from theorem 3.15

3.2. Descending plane partitions.

Definition 3.17. A descending plane partition (DPP) is a plane partition satisfying the
following:

(i) entries in the array decrease weakly across rows
(ii) on successively indenting the left edges of the array in a staircase form, entries decrease

strictly along columns
(iii) the number of columns in any row is strictly less than the largest entry of that row
(iv) the number of columns is any row is greater than or equal to the largest entry of the

row below it
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Figure 5. A DPP of order 7

A DPP has order n if each entry in the array is less than or equal to n

Theorem 3.18. (Andrews, 1979): The number of descending plane partitions of order n
is equal to the number of ASMs of the same order, and is given by

Dn “ An “
ź

1ďiďjďn

n` i` j ´ 1

2i` j ´ 1

3.3. Totally symmetric self-complementary plane partitions. Let π be a plane par-
tition in an aˆ bˆ c room, i.e, π has at most a rows, b columns, and largest entry at most c.
π is symmetric if πi,j “ πj,i. The complement πc of π is the set of unit cubes that fit inside
the a ˆ b ˆ c box, but do not belong to π. A plane partition is self-complementary if it is
equal to its complement.

Definition 3.19. A totally symmetric self-complementary plane partition (TSSCPP) is a
plane partition that is both symmetric and cyclically symmetric, as well as self-complementary.

Figure 6. Two TSSCPPs in a 6ˆ 6ˆ 6
box

Theorem 3.20. (Andrews, 1994): The number of TSSCPPs in a 2nˆ 2nˆ 2n box equal
to the number of ASMs of order n

10



4. Macmahon’s Box Formula

4.1. Plane partitions as lozenge tilings. A dimer covering, or a perfect matching of a
graph G is a collection of edges that covers all the vertices exactly once, that is, each vertex
is the endpoint of a unique edge.

Kasteleyn showed how to count the number of dimer coverings of an mˆ n square grid, and
later on any planar graph. The statement is particularly simple when G is a subgraph of
the honeycomb graph H of the regular tiling of the plane by hexagons, bounded by a simple
polygon. Then the number of coverings ZG is the square root of the determinant of the
adjacency matrix of G.

This is relevant because another way of viewing plane partitions in an aˆbˆc box, is as lozenge
tilings of an aˆ bˆ cˆ aˆ bˆ c hexagonal region of a triangular grid. Therefore, counting
the number of plane partitions boils down to counting the number of perfect matchings of
the dual graph.

Theorem 4.1. (Kasteleyn’s theorem): Let G be a planar graph. Then,

(i) there exists an orientation of G such that every face in G has an odd number of
clockwise oriented edges

(ii) if ApGq is the adjacency matrix for such an orientation, the number of perfect match-

ings in G is
a

detpApGqq

However, proving MacMahon’s box theorem this way turns out to be difficult.

4.2. Plane partitions as lattice paths. A plane partition may be represented as a family
of plane partitions as follows: let P be a plane partition inside an aˆ bˆ c box, with at most
a rows, at most b columns, and largest entry at most c. Each row of P is itself a partition
contained within a b ˆ c box, and is uniquely represented as an up-right path from pb, 0q to
p0, cq as demonstrated.

Example 4.2.

P “

4 3 3 2
3 2
2 2
2 1

Figure 7. The partition (4,3,3,2) as a lattice path

A family of lattice paths can thus be created, with each lattice path representing each Pi:

(a) in Z2, the lattice path Pi starts at p1´ i, i´ 1q and ends at pc` 1´ i, b` i´ 1q
(b) each entry Pi,j indicates a vertical edge at i´ 1` Pi,j on the x axis.
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Figure 8. The above plane partition as family of NILPs

Notice that since Pi,j ě Pi`1,j , we get a family of non-intersecting lattice paths (NILPs).
Hence, in order to count the number of partitions in a box, we must count certain families
of NILPs. The Lindström–Gessel–Viennot lemma is a way to do that.

Definition 4.3. In a permutation σ if σpiq ą σpjq for i ă j, then pσpiq, σpjqq is an inversion
pair of σ

Definition 4.4. The sign of a permutation σ can be expressed as

sgnpσq “ p´1qinvpσq

where invpσq is the inversion number, i.e, the number of inversion pairs in σ.

Theorem 4.5. The inversion number invpσq of a permutation σ P Sn has the same parity
as the number of transpositions tpσq in the decomposition of σ, and hence

sgnpσq “ p´1qt

Proof. In the case of the identity permutation, the proof is trivial. Since every permutation
can be obtained be sequentially left-multiplying the identity with transpositions, it is suffi-
cient to show that multiplying by one transposition changes the number of inversion pairs by
an odd number, hence switching the parity of invpσq.

Suppose we have a permutation σ. Left-multiply by pσiσjq where i ă j to obtain pσiσjq ¨σ “
σ1. This clearly makes/removes the pi, jq inversion pair, changing invpσq by ˘1. Next, we
show that the remaining change in invpσq is by an even amount.

For any a R ri, js, it is not hard to see that the inversion status of σa and σi (or σj) are
the same under both σ and σ1. On the other hand, if a P pi, jq, then the inversion status
of σi and σa flips when we go σ to σ1 (and symmetrically between σj and σa). So, suppose
there are N elements strictly between i and j, and K of them form inversion pairs with i (or
σi) under σ, and hence N ´K did not. Under σ1, we have then lost K inversion pairs, and
gained N ´K, for a net change of N ´ 2K in invpσq. Symmetrically, if L elements in pi, jq
formed inversion pairs with j under σ, we will have a net change of N ´ 2L in invpσq.

Therefore, total change in invpσq amounts to 1 ` pN ´ 2Kq ` pN ´ 2Lq, which is an odd
integer. �

4.3. Lindström–Gessel–Viennot lemma. Let G “ pV,Eq be a finite directed acyclic
graph. Let G be edge-weighted, such that the weight of a directed path p “ pv1, . . . , vkq is
the product of the weights of the contained edges:

wppq “
k´1
ź

i“1

wpvi, vi`1q
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Let P “ pp1, . . . , pnq be the family of paths in G with distinct starting points in ts1, . . . , snu
and distinct ending points in te1, . . . , enu. Define the weight of the family of paths as

wpPq “
n
ź

i“1

wppiq

If the the ith path starts at si and ends at eσi @i where σ P Sn, then the sign of the family
P is sgnpPq “ sgnpσq. P is said to be non-intersecting if no pair of path in P has a vertex
in common.

Theorem 4.6. (Karlin-McGregor, 1959; Lindström, 1973; Gessel-Viennot, 1985):
Let G be an edge-weighted, finite, directed, acyclic graph with two families of disjoint ver-
tices S “ ts1, . . . , sn}, and E “ te1, . . . , enu. Let ppi, jq be the weighted sum from si to ej.
Then the signed weighted enumeration of non-intersecting lattice paths (NILPs) P starting
at s1, . . . , sn and ending at e1, . . . , en is given by

ÿ

P an NILP

sgnpPqwpPq “ detpppi, jqq1ďi,jďn

Proof. Using the Leibniz notation of the determinant, we get

detpPi,jq “
ÿ

σPSn

sgnpσq
n
ź

i“1

ppi, σiq

Further expansion of the above expression results in the signed sum of weights of every pos-
sible family of paths from S to E. To isolate those terms in the summation that correspond
to NILPs, we need to find a weight-preserving, sign-reversing involution on the set of
all families, which will pairwise cancel the contribution of families with intersecting paths.

In any family P “ pp1, . . . , pnq, let a be the smallest integer such that the path pa “ psa “
a1, a2, . . . , an “ eσaq from sa to eσa has an intersection. Let b be the smallest integer such
that pb “ psb “ b1, b2, . . . , bm “ eσbq and pa intersect, and let k “ au “ bv be the last point
of intersection. Interchange the vertices of pa and pb after u, to obtain

p1a “ psa “ a1, a2, . . . , k, . . . , bm´1, bm “ eσbq

p1b “ psb “ b1, b2, . . . , k, . . . , an´1, an “ eσaq

Figure 9. The LGV involution

We thus obtain another family P 1 “ pp1, . . . , pa´1, p1a, pa`1, . . . , pb´1, p1b, pb´1, . . . , pnq, where
a path starting at si ends at eσ1i , where σ1= pσaσbq ¨ σ to account for the interchange of the

endpoints of paths starting at sa and sb. Performing this process on P 1, we get back P,
therefore this process is an involution. Since the edges are preserved in the involution, so are
the weights of the paths and thus wpP 1q “ wpPq. Also, since σ1 can be obtained from σ by a

single transposition, p´1qtpσq “ ´p´1qtpσ
1q, and hence sgnpP 1q “ ´sgnpPq. The involution is

therefore weight-preserving and sign-reversing as desired, and contributions of families with
intersecting paths cancel pairwise, proving the result. �
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Corollary 4.7. (Simplest form of the LGV lemma) Suppose G is such that the only
NILPs are from si to ei@i. Then, detpPpi,jqq gives the weighted sum over all NILPs, and is
manifestly positive.

In order to apply the LGV lemma to count the families of NILPs that represent partitions in
the box, we first need to find a weight-preserving sign-reversing involution on the families of
NILPs. The LGV lemma cannot be used directly since as per MacMahon’s formula since the
weight of each lattice path is the area of the Young diagram of the partition it represents.

Definition 4.8. The minimal path from si to ej is the path that consists of all up steps
initially, followed by all right steps.

Let arpppi, jqq be the area enclosed by the path ppi, jq and the minimal path from i to j.

Lemma 4.9. (Krattenhaler’s lemma): Given indeterminates x1, . . . , xn, a2, . . . , an, and
b2, . . . , bn, we have

detppxi ` anq ¨ ¨ ¨ pxi ` aj`1qpxi ` bjq ¨ ¨ ¨ pxi ` b2qq1ďi,jďn “
ź

1ďiăjďn

pxi ´ xjq
ź

2ďiďjďn

pbi ´ ajq

Theorem 4.10. (MacMahon’s ”Box Formula”): The generating function of the number
of plane partitions contained in an aˆ bˆ c box is given by

ÿ

πĂaˆbˆc

q|π| “
a
ź

i“1

b
ź

j“1

c
ź

k“1

1´ qi`j`k´1

1´ qi`j`k´2

Proof. Let pps1, e1q and pps2, e2q be two intersecting lattice paths in a family of lattice paths.
Performing the LGV involution, we observe that the weights of the paths are not preserved.

Figure 10. LGV involution on lattice paths

If the x´coordinates of s1 and s2 are i1 and i2 respectively, and the y´coordinates of e1 and
e2 are j1 and j2 respectively, then the change in weight is

Arppps1, e2qq ¨Arppps2, e1qq ´Arppps1, e1qq ¨Arppps1, e2qq “ pi1 ´ i2qpj1 ´ j2q

To make the difference in weights 0, we modify the weight of each path by introducing a
quantity whose contribution to the difference is ´pi1 ´ i2qpj1 ´ j2q.

´pi1 ´ i2qpj1 ´ j2q “ ´i1pj1 ´ j2q ` i2pj1 ´ j2q ` pi
2
1 ´ i

2
1q ` pi

2
2 ´ i

2
2q

“ i1pi1 ´ j1q ` i2pi2 ´ j2q ´ i1pi1 ´ j2q ´ i2pi2 ´ j1q

Thus, if wpppi, jqq “ qipi´jq`Arppppi,jqqq, then

wppps1, e1qq ¨ wppps2, e2qq “ wppps1, e2qq ¨ wppps2, e1qq
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The involution from the LGV lemma is now weight-preserving and sign reversing. The
quantity ipi ´ jq “ 0 for NILPs since i “ j, and the path from si to ei has weight qπi as
wanted. Thus, by the LGV lemma,

ÿ

πĂaˆbˆc

q|π| “ det

˜

qipi´jq
„

b` c
b` j´ i



q

¸

1ďi,jďa

Evaluating the determinant: LetM be the nˆnmatrix given byM “

˜

qipi´jq
„

b` c
b` j´ i



q

¸

.

The pi, jqth term of the matrix is:

qipi´jq
„

b` c
b` j´ i



q

“ qipi´jq
rb` csq!

rb` j´ isq!rc` i´ jsq!

“ qipi´jq

b`c
ś

k“1

1´ qk

b`j´i
ś

l“1

1´ ql
c`i´j
ś

m“1
1´ qm

“ qipi´jq

b`c
ś

k“1

1´ qk

b`a´i
ś

l“1

1´ ql
c`i´1
ś

m“1
1´ qm

ˆ

b`a´i
ź

n“b`j´i`1

1´ qn
c`i´1
ź

p“c`i´j`1

1´ qp

We factor out the j´independent term from each row of the determinant to get:
(4.1)

detpMq “
a
ź

i“1

¨

˚

˚

˚

˝

b`c
ś

k“1

1´ qk

b`a´i
ś

l“1

1´ ql
c`i´1
ś

m“1
1´ qm

˛

‹

‹

‹

‚

¨ det

˜

qipi´jq
a´j
ź

k“1

1´ qb`j´i`k
j´1
ź

l“1

1´ qc`i´j`l

¸

Consider the pi, jqth term of this simplified determinant. Factor out q´i from each of the
pa´ jq terms in the first product, and ´qj´c´l from each of the pj ´ 1q terms in the second
product, to get:

(4.2) det

˜

p´1qpj´1qqipi´jq´ipa´jq`cpj´1q´p
j
2q
a´j
ź

k“1

qi ´ qb`j´i`k
j´1
ź

l“1

qi ´ qj´c´l

¸

“

i“a
ź

i“1

p´1qpi´1qqi
2´ia`cpi´1q´pi2q ¨ det

˜

a´j
ź

k“1

qi ´ qb`j´i`k
j´1
ź

l“1

qi ´ qj´c´l

¸

We can now use Krattenhaler’s lemma (lemma 4.9) to further simplify this determinant to
get:

(4.3) det

˜

a´j
ź

k“1

qi ´ qb`j´i`k
j´1
ź

l“1

qi ´ qj´c´l

¸

“
ź

1ďiăjďa

pqi ´ qjq
ź

2ďiďjďa

p´q´c`i´1 ` qb`jq

“

a
ź

i“1

qipa´iq
ź

1ďiăjďa

p1´ qj´iq
a
ź

i“2

qp´c`i´1qpa`1´iq
ź

2ďiďjďa

p1´ qb`c`j´iq

15



Combining 4.1, 4.2 and 4.3, we get

(4.4) detpMq “
a
ź

i“2

qipc´aq´c`p
i`1
2 q`ipa´iq`p´c`i´1qpa`1´iq

ˆ

a
ź

i“1

¨

˚

˚

˚

˝

b`c
ś

k“1

1´ qk

b`a´i
ś

l“1

1´ ql
c`i´1
ś

m“1
1´ qm

a
ź

i“1

qipa´iq
ź

1ďiăjďa

p1´ qj´iq
a
ź

2ďiďjďa

p1´ qb`c`j´iq

˛

‹

‹

‹

‚

The pre-factor of q is:
a
ř

i“2
ripc´ aq ´ c`

`

i`1
2

˘

` ipa´ iq ` p´c` i´ 1qpa` 1´ iqs

“

a
ÿ

i“2

r2ic´ 2c´
3i2

2
`

5i

2
´ ac` ai´ a´ 1s

“ ´pac` 2c` a` 1qpa´ 1q ` p2c` a`
5

2
qp
apa` 1q

2
´ 1q ´

3

2
r
apa` 1qp2a` 1q

6
´ 1s

“ 0

The remaining factors can be written as:

“

a
ź

i“1

¨

˚

˚

˚

˝

b`c
ś

k“1

p1´ qkq
a
ś

i“1
qipa´iq

a
ś

j“i`1
p1´ qj´iq

a
ś

j“i
p1´ qb`c`j´i`1q

b`a´i
ś

l“1

p1´ qlq
c`i´1
ś

m“1
p1´ qmq

˛

‹

‹

‹

‚

ˆ

a
ź

j“1

1

1´ qb`c`j

“

a
ź

i“1

¨

˚

˚

˚

˝

b`c
ś

k“1

p1´ qkq
a
ś

i“1
qipa´iq

a´i
ś

j“1
p1´ qjq

a´i`1
ś

j“1
p1´ qb`c`jq

b`a´i
ś

l“1

p1´ qlq
c`i´1
ś

m“1
p1´ qmq

˛

‹

‹

‹

‚

ˆ

a
ź

j“1

1

1´ qb`c`j

“

a
ź

i“1

¨

˚

˚

˚

˝

a`b`c´i`1
ś

k“1

p1´ qkq

a´l`b
ś

l“a´i`1

p1´ qlq
c`i´1
ś

m“1
p1´ qmq

˛

‹

‹

‹

‚

ˆ

a
ź

j“1

1

1´ qb`c`j

Replacing i by a´ i` 1 in the k and l products,
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“

a
ź

i“1

¨

˚

˚

˚

˝

b`c`i
ś

k“1

p1´ qkq

i`b´1
ś

l“i

p1´ qlq
c`i´1
ś

m“1
p1´ qmq

˛

‹

‹

‹

‚

ˆ

a
ź

j“1

1

1´ qb`c`j

“

a
ź

i“1

¨

˚

˚

˚

˝

b`c`i´1
ś

k“c`i

p1´ qkq

i`b´1
ś

l“i

p1´ qlq

˛

‹

‹

‹

‚

“

a
ź

i“1

b
ź

j“1

1´ qi`j`c´1

1´ qi`j´1

“

a
ź

i“1

b
ź

j“1

c
ź

k“1

1´ qi`j`k´1

1´ qi`j`k´2

Hence proven �

5. Symmetry Classes of Plane Partitions

A plane partition π is a symmetric plane partition (SPP) if πi,j “ πj,i @i, j P N.

For convenience, define the set

Bpa, b, cq “ tpi, j, kq|1 ď i ď a, 1 ď j ď b, 1 ď k ď cu

so that a plane partition π is a subset of B such that if pi, j, kq P π, then pi ´ 1, j, kq, pi, j ´
1, kq, pi, j, k ´ 1q P π. A symmetric plane partition in Bpa, a, cq is a partition π such that if
pi, j, kq P π then pj, i, kq P π.

Conjecture 5.1. (MacMahon’s conjecture): The generating function for symmetric
plane partitions that are subsets of Bpa, a, cq is given by

ÿ

πĎBpa,a,cq
S2pπq“π

q|π| “

˜

a
ź

i“1

c
ź

k“1

1´ q1`2i`k´2

1´ q2i`k´2

¸˜

ź

1ďiăjďa

c
ź

k“1

1´ q2`2pi`j`k´2q

1´ qi`j`k´2

¸

Ian Macdonald realised that this conjecture could be expressed differently.

Let S2 be the group of permutations (of order 2) acting on the first two coordinates of an
SPP π. Let B{S2 be the set of orbits of elements of B under the action of S2. There are two
types of orbits:

(i) singletons of the form tpi, i, kqu
(ii) doubletons of the form tpi, j, kq, pj, i, kqu, where i ‰ j

For an orbit η, let |η| denote the size of the orbit. Define the height of an element pi, j, kq as

htpi, j, kq “ i` j ` k ´ 2
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and let the height of an orbit, htpηq, be the height of any of its elements. Then, MacMahon’s
conjecture for SPPs can be rewritten as:

ÿ

πĎBpa,a,cq
S2pπq“π

q|π| “
ź

ηPBpa,a,cq{S2

1´ q|η|p1`htpηqq

1´ q|η|htpηq

This way of rewriting the conjecture further enabled Macdonald to conjecture formulae
for cyclically symmetric plane partitions (CSPPs) and totally symmetric plane partitions
(TSPPs).

Conjecture 5.2. (Macdonald’s conjecture): The generating function for cyclically sym-
metric plane partitions that are subsets of Bpa, a, aq is given by

ÿ

πĎBpa,a,aq
π a CSPP

q|π| “
ź

ηPBpa,a,aq{C3

1´ q|η|p1`htpηqq

1´ q|η|htpηq

where C3 is the cyclic group of order 3, acting on pi, j, kq.

Conjecture 5.3. (Macdonald’s TSPP conjecture): The generating function for totally
symmetric plane partitions that are subsets of Bpa, a, aq is given by

ÿ

πĎBpa,a,aq
π a TSPP

q|π| “
ź

ηPBpa,a,aq{S3

1´ q|η|p1`htpηqq

1´ q|η|htpηq

where S3 is the group of all permutations acting on pi, j, kq.

Similarly, replacing S2 with the trivial group, S1, yields the number of plane partitions
contained in Bpa, b, cq.

5.1. Symmetric functions. Let R be a commutative ring with identity and let x be an
indeterminate.

Definition 5.4. The ring of formal power series in x denoted Rrrxss consists of formal sums
of the form

fpxq “
ÿ

ně0

anx
n ,where an P R @ n

Addition and multiplication on Rrrxss is defined as on the ring of polynomials Rrxs, with
identity elements being 0 and 1 respectively. We can extend this definition to the ring of
formal power series in countably infinite indeterminates, denoted Rrrx1, x2, x3, ...ss, where
each summand is a monomial of finite degree.

Definition 5.5. Let n P N. A weak composition of n is an infinite sequence α “ pα1, α2, α3 . . .q
such that

8
ÿ

i“1

αi “ n

Definition 5.6. A homogeneous symmetric function of degree n over R is a formal power
series

fpxq “
ÿ

α

cαxα, where

(i) α ranges over all weak compositions of n
(ii) cα P R

(iii) xα ” xα1
1 xα2

2 xα3
3 . . .
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(iv) fpx1, x2, . . .q “ fpxσ1 , xσ2 , . . .q for every permutation σ of N.

Let ΛnR ” Λn be the set of homogeneous symmetric functions of degree n.

‚ If f, g P Λn and a, b P R, then af ` bg P Λn. If R “ Q, ΛnR is a vector space.
‚ If f P Λm, g P Λn, then Λm`n

‚ If we write ΛR “ Λ0
R ‘Λ1

R ‘Λ2
R . . ., then every symmetric function f can be written

as f “ f0 ` f1 ` f2 ` . . . where f i P ΛiR. Then, ΛR becomes an R-algebra.

5.1.1. Schur functions. Let λ $ n. A Semi-standard Young Tableau (SSYT) of shape λ is a
filling of the Young diagram of λ by positive integers that increase weakly along rows and
increase strictly along columns. If T is an SSYT of shape λ, we write shpT q “ λ. The type
of T denoted by α “ pα1, α2, . . .q “ typepT q is a weak composition where αi ” αiptq is the
number of parts of T equal to i. For an SSYT of type α we write

xT “ x
α1pT q
1 x

α2pT q
2 . . .

Definition 5.7. Given a partition λ $ n, define the Schur function sλ indexed by λ, in the
variables x1, x2, . . . as

sλ “
ÿ

T
shpT q“λ

xT

Theorem 5.8. Schur functions are symmetric, i.e sλ P Λ

Proof. Any transposition pijq, i ă j can be written as a product of adjacent transpositions
in the form pi i` 1qpi` 1 i` 2q . . . pj ´ 1 jq . . . pi` 1 i` 2qpi i` 1q. Since sλpxq is invariant
under any permutation N interchanging finitely many positions, it suffices to prove that sλ
is invariant under the interchange of xi and xi`1.

Let λ $ n and α “ pα1, α2, . . .q be a weak compositions of n. Interchange αi, αi`1 to get

α1 “ pα1, . . . , αi´1, αi`1, αi, αi`2, . . .q

and define

Tλ,α “ tSSYT T |shpT q “ λ, typepT q “ αu

|Tλ,α| gives the coefficient of xT, and we need to show that |Tλ,α| “ |Tλ,α1 |.
Let T P Tλ,α. Consider those parts of T that are equal to either i or i ` 1. We find that in
any column, there are three possibilities:

(i) The column contains neither i nor i` 1
(ii) It contains both i and i` 1

(iii) It contains only one of i and i` 1

Since (i) is inconsequential and cardinality is preserved in (ii), we focus our our attention on
(iii). The most general configuration of (iii) is :

i . . . i
r0

i . . . i
r

i` 1 . . . i` 1

s

i` 1 . . . i` 1

s0

Here, there are r0 pi` 1qs under the first r0 is in the following row, and s0 is under the last
s0 pi` 1qs in the previous row. All parts below the next r is will therefore be strictly greater
than i` 1, and all parts directly above the s pi` 1qs will be strictly less than i. There thus
exists a tableau φpT q, with s is and r pi` 1qs in each such block. φ : Tλ,α ÞÑ T λ, α1 is clearly
an involution, and hence proven that |Tλ,α| “ |Tλ,α1 |. �
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Definition 5.9. Let λ $ n, and α be a weak composition of n. Then, the Kostka number
Kλ,α is the number of SSYTs of shape λ and weight (or type) α:

Kλ,α “ |Tλ,α|

Then, by theorem 5.8

sλ “
ÿ

µ$n

Kλ,µmµ

where µ is the partition made by rearranging α. For µ “ x1ny, Kλ,x1ny is given by the
hook-length formula (theorem 3.6).

Proposition 5.10. tsλ|λ $ nu is a basis for Λn

Proposition 5.11. xsλ, sµy “ δλ,µ, i.e, tsλu forms an orthonormal basis for Λ

Alternate definition of Schur functions (Jacobi’s bialternant formula):

Fix n variables x1, . . . , xn. Let λ $ n be a partition with λ1 ą λ2 ą . . . λn ě 0. Define
δ “ pn´ 1, n´ 2, . . . , 1, 0q. Define the skew-symmetric function aλ`δpx1, . . . , xnq as

aλ`δ “ detpx
λj`n´j
i q1ďi,jďn “

ÿ

πP§n

sgnpπq
n
ź

k“1

x
λπk`n´πk
k

Since aλ`δ is alternating, it is divisible by the Vandermonde determinant “ detpxn´ji q “ aδ,
and their ratio is a symmetric polynomial in x1, . . . , xn.

Definition 5.12. Schur polynomials in n variables x1, . . . , xn indexed by a partition λ $ n,
are defined as follows:

sλpx1, . . . , xnq “
aλ`δ
aδ

Theorem 5.13. (Cauchy Identity): Let x “ px1, x2, . . .q and y “ py1, y2, . . .q be two
families of variables. Then for all partitions λ,

ÿ

λ

sλpxqsλpyq “
ź

i,jě1

1

1´ xiyj

Theorem 5.14. (Jacobi-Trudi Identity): Let λ “ pλ1, . . . , λkq be a partition of n, where
λ1 ě . . . ě λk ě 0. Schur polynomials can be expressed in terms of complete homogeneous
polynomials as follows:

sλpx1, . . . , xnq “ detphλj´j`ipx1, . . . , xnqq1ďi,jďk

Proof. Let Tn,λ be an SSYT of shape λ with entries in rns. Each T P Tn,λ can be expressed as a

family of non-intersecting lattice paths as follows: the ith lattice path goes from si “ p1, k´iq
to ei “ pn, kλj ´ jq, taking up and right steps. Assign each horizontal edge the weight 1, and

the vertical edge in column j, the weight xj . For example, the SSYT

1 1 1 2 4
2 3 4
3 4 5
4 5

has weight x31x
2
2x

2
3x

4
4x

2
5. Since each SSYT has strictly increasing entries along the columns,

the corresponding family of lattice paths is non-intersecting. There is thus a bijection between
Tn,λ and families of NILPs with specific starting and ending points.
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Now, since a path from si to ej has λj ´ j ` i up steps, the degree of its weight is λj ´ j ` i.
Moreover, the sum of the weights of all paths from si Ñ ej is a symmetric function of
x1, . . . , xn. Since every monomial has coefficient 1 and degree at most n,

wtpsi Ñ ejq “ hλj´j`ipx1, . . . , xnq

Using the LGV lemma, we now have

sλpx1, . . . , xnq “ detpwtpsi Ñ ejqq1ďi,jďk “ detphλj´j`ipx1, . . . , xnqq1ďi,jďk

�

We can also use Schur functions to prove Macmahon’s Box formula.

5.2. Alternate proof of the Box formula. We can write any semi-standard Young tableau
in terms of variables by replacing the entry with value k by xk. For example, the previously
defined SSYT may be written as

x1 x1 x1 x2 x4
x2 x3 x4
x3 x4 x5
x4 x5

We can replace the xis with powers of q to represent plane partitions in a box. For example,
setting x1 “ q6 would mean that each x1 represents a stack of 6 cubes. However, since
SSYTs are strictly decreasing along columns, we can only obtain CoSPPs in this manner,
with weight equal to the sum of the entries “ xT “ weight of the SSYT.

Suppose λ “ pbaq, and T is an SSYT of shape λ. To get a plane partition, subtract a` 1´ i
from each entry in the ith row. Setting x1 “ qa`c, . . . , xa`c´1 “ q2, xa`c “ q, and subtracting
a ` 1 ´ i from each entry means multiplying the weight of the CoSPP by q´b´2b´...´ab “
q´bapa`1q{2 to the weight of the corresponding plane partition in an aˆ bˆ c box. Since any
plane partition inside Bpa, b, cq can be obtained in this manner, we get

ÿ

πĎaˆbˆc

q|π| “ q´bapa`1q{2sλpq
a`c, qa`c´1, . . . , qq

which can be evaluated using Jacobi’s bialternant formula (5.12).

5.3. Proof of MacMahon’s SPP Conjecture. MacMahon conjectured that the generat-
ing function for symmetric plane partitions in an aˆ aˆ c box, i.e, SPPs that are subsets of
Bpa, a, cq, is as follows:

ź

πĎBpa,a,cq
S2pπq“π

q|π| “

˜

a
ź

i“1

c
ź

k“1

1´ q1`2i`k´2

1´ q2i`k´2

¸˜

ź

1ďiăjďa

c
ź

k“1

1´ q2`2pi`j`k´2q

1´ qi`j`k´2

¸

which can be written as
ź

ηPBpa,a,cq{S2

1´ q|η|p1`htpηqq

1´ q|η|htpηq

The proof of MacMahon’s conjecture can be divided into three steps: the first step is to
express the generating function for SPPs as Schur functions. Then, we use Macdonald’s
formula to sum all Schur functions whose partitions fir inside an aˆ c rectangle. Lastly, we
use the Weyl denominator formula to simplify the resulting determinants as products.

21



Lemma 5.15.
ÿ

πan SPP
πĎaˆaˆc

“
ÿ

λĎpcaq

sλpq
2a´1, q2a´3, . . . , q3, qq

Proof. There is a bijection between SPPs of n in an aˆ aˆ c box and CoSPPs of n with odd
heights in an aˆ cˆ p2a´ 1q box. This can be shown by first slicing an SPP parallel to the
xy plane into ”levels”, i.e subsets of cubes of the same heights. Since each level is symmetric
about the x “ y plane, we can further decompose them into the hooks of the cubes lying in
the x “ y plane. Because of the symmetry in each level, hook lengths are odd and strictly
decreasing within any particular level. We can reassemble the hooks into columns such that
the ith stack in the jth column is equal to the ith hook at the jth level, and i ď a, j ď c and
each hook contains at most 2a ´ 1 cubes. We end up with a CoSPP in an a ˆ c ˆ p2a ´ 1q
box, where each non-zero entry is odd. This process is reversible and weight-preserving, i.e,
the number of cubes is preserved.

This set of CoSPPs is in bijection with semi-standard Young tableaux inside pcaq. Adding 1
to each entry in a CoSPP and dividing by 2 results in an an SSYT inside an aˆ cˆ a box.
Then, by the same kind of bijection described in the alternate proof of the Box Theorem, the
generating function of CoSPPs is

ÿ

λĎpcaq

sλpq
2a´1, . . . , q3, qq

�

Recall that we had defined sλpx1, . . . , xnq “
aλ`δ
aδ

. This is a special case of the Weyl character

formula. This formula for Schur functions is the character of the group GLnpCq for the
representation indexed by λ, and thus Schur functions are also called GLn characters.

Similarly, there are characters formulae for other classical matrix groups.

Definition 5.16. The orthogonal group is

Opnq “ tA PMn|AA
˚ “ Iu

where ˚ is used to represent the summation conjugate.

Definition 5.17. The odd orthogonal characters denoted SOoddλ , indexed by either a partition
of a half-partition (i.e a partition with entries in N` 1{2) λ “ pλ1, . . . , λnq is given by

SOoddp x1, . . . , xnq “
det

´

x
λj`n´j`1{2
i ´ x

´λj´n`j´1{2
i

¯

1ďi,jďn

det
´

x
n´j`1{2
i ´ x

´n`j´1{2
i

¯

1ďi,jďn

Theorem 5.18. (Weyl denominator identity): the identity states that

det
´

x
n´j`1{2
i ´ x

´n`j´1{2
i

¯

1ďi,jďn
“

n
ź

i“1

px
1{2
i ´ x̄

1{2
i q

ź

1ďi,jďn

pxi ´ xjqpxixj ´ 1q

xixj

where x̄ “ 1
x

Remark 5.19. As in the GLn case, this is symmetric in xi Ø xj , and in addition, there is
the xi Ø x̄i, @i. Unlike the GLn case, this is a Laurent polynomial.

Lemma 5.20.
ÿ

λĎpcaq

sλpx1, . . . , xaq “ SOoddpp c
2
qaqpx1, . . . , xaq ¨ px1, . . . , xaq

c{2
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By lemma 5.15 and lemma 5.20, we have
ÿ

π an SPP
πPaˆaˆc

q|π| “ SOoddp c
2
qapx1, . . . , xaq ˚ px1x2 . . . xaq

c{2

and we need to evaluate the character for xi “ q2a´2i`1.
Denominator: The denominator of the character is

det
´

q2a´2i`3{2`a´j ´ q̄2a´2i`3{2`a´j
¯

“

a
ź

i“1

´

qp2a`1´2iq{2 ´ q´p2a`1´2iq{2
¯

ź

1ďiăjďa

`

q2a`1´i ´ q2a`1´j
˘ `

q4a`2´i´j ´ 1
˘

q4a`2´i´j

Replace i and a` 1´ i, and j and a` 1´ j to get

“

a
ź

i“1

´

qpi´1{2q ´ q´pi´1{2q
¯

ź

1ďjăiďa

`

q2i´1 ´ q2j´1
˘ `

q2i`2j´2 ´ 1
˘

q2i`2j´1

“
1

q1{2`3{2`...`p2a´1q{2

a
ź

i“1

`

q2i´1 ´ 1
˘

ś

1ďjăiďa

`

q2i´1 ´ q2j´1
˘ `

q2i`2j´2 ´ 1
˘

q2p2`...`aq`2p4`...`pa`1qq`...`2p2a´2q

“
1

qa2{2`a2pa´1q

a
ź

i“1

`

q2i´1 ´ 1
˘

ź

1ďjăiďa

`

q2i´1 ´ q2j´1
˘ `

q2i`2j´2 ´ 1
˘

Numerator: The numerator is of the form

Numerator “ det
´

x
c{2`a´j´1{2
i ´ x̄i

´c{2`a´j`1{2
¯

where xi “ q2a´2i`1.

Expand the determinant using Leibniz expansion. Since there are two terms in each entry of
the matrix, there are 2a terms corresponding to each permutation. We can further simplify
the expansion by taking a subset T of ras and choosing values of j from T for the second
term as follows:

“
ÿ

σPSa

ÿ

TĎras

p´1qsgnpσq`|T |
ź

jRT

xc{2`a´j`1{2σj

ź

jPT

x´c{2´a`j´1{2σj

“
ÿ

σPSa

ÿ

TĎras

p´1qsgnpσq`|T |
a
ź

j“1

x
εjpc{2`a´j`1{2q
σj

where

εj “

#

´1 j P T

`1 j R T

Interchanging σ and σ´1, and εj and εσ´1pjq,

“
ÿ

σPSa

ÿ

TĎras

p´1qsgnpσq`|T |
a
ź

j“1

x
εjpc{2`a´σj`1{2q
j
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Substitute xj with q2a`1´2j :

“
ÿ

σPSa

ÿ

TĎras

p´1qsgnpσq`|T |
a
ź

j“1

qεjpc{2`a´σj`1{2qp2a`1´2jq

“
ÿ

σPSa

ÿ

TĎras

p´1qsgnpσq`|T |
a
ź

j“1

pqc`2a´2σj`1{2qa`1{2´j

“ det
´

pqc`2a´i`1qa`1{2´j ´ pq´c`2a´i`1qa`1{2´j
¯

Using the Weyl denominator identity 5.18:

“

a
ź

i“1

´

qc{2`a´i`1{2 ´ q´c{2`a´i`1{2
¯

ź

1ďiăjďa

`

qc`2a´2i`1 ´ qc`2a´2j`1
˘

q2c`4a´2i´2j`2 ´ 1

q2c`4a´2i´2j`2

Replace i with a` 1´ i, and j with a` 1´ j

“

a
ź

i“1

´

qc{2`i´1{2 ´ q´c{2`i´1{2
¯

ź

1ďjăiďa

`

q2i´1 ´ q2j´1
˘

q2c`2i`2j´2 ´ 1

qc`4a´2i´2j`2

“

a
ś

i“1

`

qc`2i´1 ´ 1
˘

qapc´1q{2`apa`1q{2
˚

ś

iďjăiďa

`

q2i´1 ´ q2j´1
˘ `

q2c`2i`2j´2 ´ 1
˘

qcp
a
2q`a

2pa´1q{2

Combining everything, we get

“

a
ź

i“1

`

qc`2i´1 ´ 1
˘

q2i´1 ´ 1

ź

1ďjăiďa

`

q2c`2i`2j´2 ´ 1
˘

pq2i`2j´2 ´ 1q
˚ qa

2c{2 ˚
qa

2{2 ¨ qa
2pa´1q

qac{2`a2{2 ¨ qcp
a
2q`a

2pa´1q

“

a
ź

i“1

`

qc`2i´1 ´ 1
˘

q2i´1 ´ 1

ź

1ďjăiďa

`

q2c`2i`2j´2 ´ 1
˘

pq2i`2j´2 ´ 1q

“

˜

a
ź

i“1

c
ź

k“1

1´ q1`2i`k´2

1´ q2i´`k´2

¸˜

ź

1ďiăjďa

c
ź

k`1

1´ q2`2pi`j`k´2q

1´ q2pi`j`k´2q

¸

Which is Macmahon’s formula.

6. Aztec Diamonds

For an ASM A of order n, let µpAq be the number of p´1q entries in A. Then, a 2-enumeration

of ASMs is
ř

2µpAq “ 2npn`1q{2. In 1992, Elkies, Kuperberg, Larsen and Propp introduced
a new class of objects called Aztec diamonds, and showed that an Aztec diamond of order
n has 2npn`1q{2 domino tilings. This result can be proven in two ways: by establishing
a correspondence between a domino tiling of an Aztec diamond and a compatible pair of
ASMs, and by weighted enumeration of monotone triangles to count the domino tilings of an
Aztec diamond.

Definition 6.1. An Aztec diamond of order n, An is the union of lattice squares ra, a` 1s ˆ
rb, b` 1s pa, b P Zq lying inside the region tpx, yq P R2 : |x| ` |y| ď n` 1u

A tiling of a region R is a set of non-overlapping tiles whose union is R, where a tile may be
any closed connected region in R2. A domino tiling of An is equivalent to a perfect matching
of its dual graph. For any tiling T of An, and for an integer k ď n, the line y “ k divides An
into two regions with an even number of lattice squares. Then, an even number of vertical
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dominoes must cross y “ k in T , and hence the number of vertical dominoes in T must be
even. Let vpT q “ 1

2 ˆ pnumber of vertical dominoes in Tq.

Let an ”elementary move” be the action of rotating the 2ˆ 2 block formed by two adjacent
horizontal (/vertical ) dominoes in a region by 90˝. Then, define the rank rpT q of T , to be
the minimum number of elementary moves needed to obtain T from the all horizontal tiling,
assuming this is possible.

Let
ADpn;x, qq “

ÿ

T

xvpT qqrpT q

where T is a domino tiling of An. Then,

Theorem 6.2. Elkies, Kuperberg, Larsen, Propp:

ADpn : x, qq “
n´1
ź

k“0

p1` xq2k`1qn´k

Corollary 6.3.

(a) set x “ 1, then

ADpn; qq “
n´1
ź

k“0

p1` q2k`1qn´k

(b) set q “ 1, then

ADpn;xq “
n´1
ź

k“0

p1` xqn´k “ p1` xq
npn`1q

2

(c) set x “ q “ 1, then

ADpnq “ 2
npn`1q

2

Notice that for an ASM A of order n,
ř

A

2µpAq “ 2
npn`1q

2

6.1. Height Functions. In order to determine the rank rpT q of a tiling T , we assign unique
integers to each corner of each lattice square in An. Write G as the graph of An with

V “ tpa, bq P Z2 : |a| ` |b| ď n` 1u

E “ tppu1, u2q, pv1, v2qq P V
2 : u1 “ v1 ˘ 1 or u2 “ v2 ˘ 1u

Colour the lattice squares in G alternately black and white, such that each square shares
its sides with oppositely coloured squares, and the line x ` y “ n ` 1 passes through only
white squares. Then, orient the edges of G such that arrows circulate clockwise around black
squares, and anticlockwise around white squares. Define v “ pa, bq to be a boundary vertex if
|a| ` |b| “ n or n` 1, and let the boundary cycle be the closed cycle containing all boundary
vertices including p0,˘pn` 1qq and p˘pn` 1q, 0q. A vertex v “ pa, bq is even if it is the top
left corner of a white square, i.e, a` b` n` 1 is an even integer.

Note that there are four possible local domino configurations in a tiling of G. In each case,
as we traverse the boundary of the domino, we encounter three arrows in the direction of
traversal, and three arrows in the direction opposite to it.

To understand height functions, we tile the complement of the Aztec diamond in R` with
horizontal dominoes, and call this tiling T`. Every boundary vertex of G thus lies on the
boundary of at least one domino in T`.

Definition 6.4. A height function HT is a unique assignment of integers to the vertices of
G given a tiling T such that
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Figure 11. Colouring and orientation of G

(a) HT p´n´ 1, 0q “ 0
(b) if uv is the boundary of a domino in T` with uÑ v, then HT pvq “ HT puq ` 1

Height functions are characterised by the following two properties:

(a) Along the boundary cycles, HT takes values 0, 1, . . . , 2n`1, 2n`2, 2n`1, . . . , 1, 0, 1, . . . , 2n`
1, 2n` 2, 2n` 1, . . . , 1, 0 starting from the vertex at p´n´ 1, 0q

(b) If uÑ v, then HT pvq is either Hpuq ` 1 or Hpuq ´ 3.

(a) is clear from the construction of T`. To prove (b), observe that if uv is not a boundary of
a tile in T`, it must bisect a domino of T`, in which case HT pvq “ HT puq ´ 3, which can be
verified for each of the four possible domino configurations. If uv does lie on the boundary of
T`, then by the definition of HT , HT pvq “ HT puq ` 1. Conversely, if H is a height function
that satisfies (a) and (b), then we can obtain the tiling T by placing a domino across every
edge such that |Hpuq´Hpvq| “ 3, and we conclude that H “ HT . Thus, we have a bijection
between such height functions and domino tilings.

6.2. Corner Sum and Height Function Matrices.

Definition 6.5. A corner sum matrix of order n is an pn` 1q ˆ pn` 1q matrix with entries
in N such that

(a) the first row and column consist of 0s
(b) the last row and column consist of entries 0, . . . , n in that order
(c) each entry is either equal to or one more than the entry to its left, and the entry

above it

Proposition 6.6. Corner sum matrices of order n are in bijection with ASMs of order n

Proof. Let Cn be a corner sum matrix of order n. Then,

ci,j “
ÿ

0ďi1ďi
0ďj1ďj

ai1,j1

for some ASM An “ raijs of order n. The inverse map An ÞÑ Cn is as follows:

ai1,j1 “ ci,j ´ ci´1,j ´ ci,j´1 ` ci´1,j´1

�

Definition 6.7. A height function matrix of order n is an pn ` 1q ˆ pn ` 1q matrix with
entries in N such that
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(a) the first row and column consist of entries 0, . . . , n in that order
(b) the last row and column consist of entries n, . . . , 0 in that order
(c) every entry differs from the entry above and, and the entry to its left, by ˘1

Proposition 6.8. Height function matrices of order n are in bijection with ASMs of order
n

Proof. Let ci,j be a corner sum matrix of order n. We can obtain the height function matrix
rhi,js by

hi,j “ i` j ´ 2ci,j

Clearly, the inverse map rhi,js ÞÑ rci,js exists. Thus, height function matrices of order n are
in bjiection with corner sum matrices of the same order, which are further in bijection with
ASMs of order n (proposition 6.6). The map An ÞÑ Hn is defined by the operation

ai1,j1 “ hi´1,j ` hi,j´1 ´ hi,j ´ hi´1,j´1

�

6.3. Aztec diamonds and ASMs. We will now show that domino tilings of the Aztec
diamond region of order n (ADn) are in bijection with pairs of ASMs pA,Bq, where A and
B are of orders n and n` 1 respectively, and satisfy a certain compatibility condition.

(T ÞÑ pA,Bq)
Given a domino tiling T of ADn with height function HT , we construct pA,Bq as follows:

‚ Define matrices A1 and B1 to record the values of HT for odd and even vertices
respectively:

A1 “ ra1i,js “ rHT p´n` i` 1,´i` jqs

B1 “ rb1i,js “ rHT p´n´ 1` i` j,´i` jqs 0 ď i, j ď n

Since the boundary vertices have fixed heights, the first and last rows and columns
of A1 and B1 are forced. Also note that consecutive entries in A1 and B1 must differ
by exactly 2, as per the definition of HT .

‚ From A1 and B1, construct matrices A˚ and B˚ as follows:

A˚ “ ra˚i,js “

«

a1i,j ´ 1

2

ff

B˚ “ rb˚i,js “

«

b1i,j
2

ff

A˚ and B˚ are height function matrices of orders n and n` 1 respectively, and are
thus in bijection with pairs of ASMs of the same orders.

‚ We can obtain the desired pair of ASMs, pA,Bq, from pA˚, B˚q as follows (proposition
6.2):

A “ rai,js “ r
1

2
pa˚i,j´1 ` a

˚
i´1,j ´ a

˚
i,j ´ a

˚
i´1,j´1qs

B “ rbi,js “ r
1

2
pb˚i,j´1 ` b

˚
i´1,j ´ b

˚
i,j ´ b

˚
i´1,j´1qs

Now, we define the inverse map. (pA,Bq ÞÑ T )

Given ASMs A and B of orders n and n ` 1 respectively, we can reverse our steps and
construct A1 and B1, and hence HT .
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The first and last rows and columns of A1 and B1 are forced, and record the heights of the
boundary vertices of ADn, which are fixed for any tiling T .

Consider an internal entry b1i,j . A vertex with height Bi,j is surrounded by vertices of heights

a1i,j , a
1
i,j´1, a

1
i´1,j , a

1
i´1,j´1, and thus can differ from each of these by 1 or 3. It turns out that

there are only 6 distinct configurations of these vertices:

Figure 12. 6 local vertex configurations for an internal entry in Bi,j

Notice that b1i,j - and hence bi,j - is forced in all but one of these configurations. The case in

which bi,j is not forced, corresponds to there being a (+1) in the pi1, j1qth entry of the ASM
A. We can perform a similar case analysis for internal entries in A1, and find that ai,j is not
forced in only one of the 6 possible local configurations. This configuration corresponds to
there being a (-1) in the pi1, j1qth entry of the ASM B.

Hence, if A is fixed and Ap˘q “ no. of ˘1s in Aq, we get 2n`pAq compatible ASMs B. Thus,

ADn “
ÿ

APASMpnq

2n`pAq

Equivalently, if B is fixed,

ADn “
ÿ

BPASMpn`1q

2n´pBq

Replacing n by n´ 1, we get

ADn´1 “
ÿ

BPASMpnq

2n´pBq

In any ASM B, since each row sums to 1, Bp`q ´Bp´q “ n. Hence,

ADn “
ÿ

APASMpnq

2n`Ap´q

“ 2n
ÿ

APASMpnq

2Ap´q

“ 2nADn´1

Therefore, by induction,

ADn “ 2
npn`1q

2
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Niharika Garg

Creative Writing Course

Niharika Garg was guided by Captain Ujjwal Srivastava and they undertook the following
projects in the same:

Publish your first blog post Write a review for a book, movie, etc Create a micro fiction tale

Write a monologue

For the month of December 2021

We wish you all the best for your future endeavours

Certificate ID:
18N56RUJDHWPM

Course ratified by



To: Whomsoever It May Concern

Subject: Letter of Recommendation for Niharika Garg

MyCaptain, an initiative by an NSRCEL, IIM Bangalore incubated company, is an

online Learning platform awarded by the SDSN as one of the Top 50 youth led

solutions working on Quality Education & Decent work and economic growth.

It is with great pleasure that I recommend Niharika Garg, on the basis of the

performance in the MyCaptain Creative Writing Workshop in the month of

December, 2021. Niharika Garg performed extremely well during the workshop

and showed excellent skills as seen in the Project submissions and participation in

the regular activities. As the mentor, I have seen that in every Live video class

session, Niharika Garg was very participative and always willing to learn and

enhance skills in every aspect. Niharika Garg is always willing to put forth a unique

approach for the Projects that are assigned, while also adhering to the guidelines

and rules.

With this, I would take this opportunity to wish Niharika Garg, all luck for future

endeavors and hope for a bright future ahead. 

Kind Regards, 

Ujjwal Srivastava

Mentor Creative Writing Workshop



InternshipOffer with VEGA 

Date: January 10, 2021 

Dear Nandini, 

I am delighted & excited to welcome you to VEGA Studios as a Content Writing Intern. At 

VEGA Studios, we believe that our team is our biggest strength and we take pride in hiring ONLY 

the best and the brightest. We are confident that you would play a significant role in the overall 

success of the venture and wish you the most enjoyable, Icarming packed and truly meaningful

internship experience with VEGA Studios. 

Your appointment wili be governed by the terms and conditions presented in the Annexure A. 

We look forward to you joining us. Please do not hesitate to caBl us for any information you may 

need. Also, please sign the duplicate of this offer as your acceptance and forward the same to us. 

Congratulations!

Gajan Roy 



Internship Offer with VEGA 
Annexure A 

You shall be govemed by the following tems and condition of service during your internship 
with VEGA STUDIOS, and those may be amended from time to time. 

1. You are being hired as a Content Writing Intern. As a Content Writing Intern 

you would be responsible for writing scripts of the provided movies. 

2. Your date of joining is 10th January 2022 and the duration of the internship would be 1 

month. During this time you are expected to devote your time and efforts solely to 

VEGA Studios work. You are also required to let your mentor know about 

forthcoming events (if there are any) in advance so that your work can be planned 

accordingly. 

3. You will be working remotely for the duration of the internship. There will be catch ups 

scheduled with your mentor to discuss work progress and overall internship experience

at regular intervals.

4. All the work that you will produce at or in relation to VEGA STUDIOS will be the 

intellectual property of VEGA STUDIOS. You are not allowed to store, copy, sell, 
share, and distribute it to a third party under any circumstances. Similarly you are 

expected to refrain from talking about your work in public domains (both online such 

as blogging, social networking site and ofiline among your friends, college etc.) 

without prior discussion and approval with your mentor. 

5. We take data privacy and security very seriously and to maintain confidentiality of any 

students, customers, clients, and companies data and contact details that you may get 

access to during your internship will be your responsibility. VEGA STUDIOS operates on 

zero tolerance principle with regard to any breach of data security guidelines. At the 

completion of the internship you are expected to hand over all VEGA STUDIOS 

work/data stored on your Personal Computer to your mentor and delete the same 

from your machine. 



Internship Offer with VEGA 
6. During the appointment period you shall not engage yourselves directly or indirectly or 

in any capacity in any other organization (other than your college). In the event of 

breach of this condition, this appointment is liable to be terminated forthwith by the 
company. In addition, you shall be liable to pay liquidated damages to the Company of 
an extent estimated by the Company. 

7. Under normal circumstances either the company or you may teminate this association 

by providing a notice of 10 days without assigning any reason. However, the company 

may terminate this agreement forthwith under situations of in-disciplinary behaviours. 

8. You are expected to conduct yourself with utmost professionalism in dealing with your 

mentor, team members, colleagues, clients and customers and treat everyone with due 

respect. 

9. VEGA STUDIOS is a start-up and we love people who like to go beyond the normal call 

of the duty and can think out of the box. Surprise us with your passion, intelligence, 
creativity and hard work-and expect appreciation & rewards to follow. 

10. Expect constant and continuous objective feedback from your mentor and other team 
members and we encourage you to ask for and provide feedback at every possible 
opportunity. It's your right to receive and give feedback - this is the ONLY way we 
all can continuously push ourselves to do better. 

11. Have fun at what you do and do the right thing - both the principles are core of what 
VEGA STUDIOS stands for and we expect you to imbibe them in your day to day actions and continuously challenge us if we are falling short of expectations on either of 
them. 

12. You will be provided Rs 1000 per month as stipend and Rs 100 
additional incentive based on the performance of the intern Rs 150 as an 

13. Certificate for intermship will be provided in a digital format once He/she completes the duration of internship



This is to certify that Yashaswi Kafola worked with KYLO APPS
in the capacity of a Business Development Intern from 8 June
2021 to 8 September 2021.

He is a reliable and dedicated individual who would perform all
the tasks with utmost diligence and deliver effective solutions
within deadlines. Because of these qualities, he was also
promoted to the position of Team Lead and to the position of
Head of Business Development thereafter.

Yashaswi is an enthusiastic individual, who never ceases to
bring out of the box ideas to the table and has excellent
communication skills and a good rapport with his fellow interns
and superiors. He has added value to our organization with his
substantial contributions.

I recommend his good work and wish him all the luck and
success for his future endeavours.

Thanking You

 

KYLO APPS

Contact- +91 8920607430 | +91 8860732624
hr@kyloapps.com
www.kyloapps.com

Saumya Thakur
Founder - Kylo Apps

A Unit of Arihant Reclamation Pvt. Ltd.

TO WHOMSOEVER IT MAY CONCERN

 Date: 08/09/2021
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CERTIF ICATE OF COMPLETION 

Yashaswi Kafola 
for recognition of your performance in Fundraising Internship of about One 
Month from 2nd June 2021 to 6th July 2021, for the children catered by 

Muskurahat Foundation. 

 
HIMANSHU GOENKA 
President & Founder 

AMOUNT RAISED: Rs 1,100/- 

Date 

8th July 2021 
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