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Abstract

We study the analytic proof of the prime number theorem given by Jacques
Hadamard and Charles Poussin in the year 1896. We begin by reformulating the
problem using complex analysis and introduce the Riemann Zeta function ((s).
We then establish some of its useful properties and study the behaviour of ((s)
near the line 0 = 1. Finally we show that ((s) has no zeros of the form 1+ it and
conclude the proof.

Keywords: Prime number theorem, Riemann zeta function, analytic number
theory, distribution of primes

Background

The prime number theorem first appeared in 1798 as a conjecture by the French
mathematician Legendre. On the basis of his study of a table of primes up
to 1,000,000, Legendre stated that if x is not greater than 1,000,000, then
m is very close to the number of primes less than x. The German math-
ematician Gauss also conjectured an equivalent of this theorem in his notebook,

perhaps prior to 1800.

Theorem: Let 7(x) be the prime-counting function that gives the number

of primes less than or equal to z, for any real number x. Then, @ is a

good approximation to m(z), i.e.

lim m(2) =1 or 7(x) ~ @

log()

In his two papers from 1848 and 1850, the Russian mathematician Chebyshev

was able to prove unconditionally that the ratio — ﬁgzzx)

below by two explicitly given constants near 1, for all sufficiently large x.

is bounded above and

Then, in 1859, the mathematician Riemann introduced new ideas into the sub-
ject, chiefly that the distribution of prime numbers is intimately connected with
the zeros of the analytically extended Riemann zeta function of a complex variable.
Extending Riemann’s ideas, two proofs of the asymptotic law of the distribution
of prime numbers were found independently by Jacques Hadamard and Charles
Jean de la Vallée Poussin and appeared in the same year (1896).



1 Reduction of the problem

For z € R and n € N, we define the following functions introduced by Chebyshev:

lo ifn=p%aeN
Y(z) = ZA(n) where A(n) = { 0 a7 otherwlgse

0(z) = Z log(p) where p is a prime.

Lemma 1.1. For z € R,

P(x) = 0(x'/)

1<a<logy

Proof. By the definition of ¢ (x), it can be rewritten as

Yla)= > logp)=>Y_ > log(p)

n<z ; n=p% a=1 p<gl/e
But 2 < p and we must have p < 21/, So must restrict a so that 2 < z/*. Hence
Ya)y= Y ) legp) = Y. )
1<a<logyr p<gl/e 1< a<logyx
O
Theorem 1.1. ¢Y(z) ~z <= 0(z)~=zx
Proof. By Lemma 1.1, we have :
Yla) =)= > )
2<a<logyz
S Z :L,l/a 1Og({[‘1/a)
2<a<Llogyz
< Z {L'l/2 log(xl/Q)
2< a<logyx
_ JElog’()
21log(2)
Hence, w;x) - 97:':) < 2\1/?15;()2). So, by squeeze theorem, we get
0
1 ) _ ) = 0, which implies ¥(z) ~ 2z <= 0O(x) ~x
r—o00 X s
O



Lemma 1.2. For x > 2, 0(x) = O(x)

Proof. First of all, we observe that for n > 2 the product of all primes between n
and 2n is a factor of (2:) Hence, as (2:) < 22" we obtain:

H p < 2" — Z log(p) < 2nlog(2)

n<p<2n n<p<2n

So we get the following list of inequalities:

0(2n) —0(n) < 2nlog(2)

Adding all of them, we obtain : 0(2n) < 2n+n+ & 4 ---]log(2) .
So, 6(2n) < 4nlog(2) or 8(n) < 2log(2)n. Thus, 0(z) = O(x). O

Theorem 1.2. (z) ~z <= 7(x) ~ 1ogx(z)

Proof. We define two sequence a,, and b,, such that

1 if n is prime
Un = { 0 otherwise - ;a” = 7(z)

b, =log(n)a, = Z b, = 0(x)

n<x

Then, if we take f(t) = @, we will have (by Abel’s summation?):

Z b(n)f(n) = B(z)f(x) — /; B(t) f'(t)dt, where B(x) = an

n<x n<lx

On substituting, we get:

() = 22 +/x o)y,

log(x) tlog?t
. 7(x) log(x) _ 0(z) N log(x) / H(tz "
x x x o tlog™t

!For any arithmetical function a(n) let A(z) = 3, ., a(n) where A(z) = 0 if z < 1. If f has a continuous
derivative on the interval [y, z], where 0 < y < x, then we have

Y. an)f(n) = A@@)f(z) — Ay) f(y) - /I A(t)f' (t)dt
Y

y<n<zx



Now, by Lemma 1.2, we have the following result:

/ o) dt=0</ t2dt>
9 tlog”t o tlog”t
Ve |
O —dt+/ ——dt
(/2 log? 2 vz log® \/x )

(L i)

+
log”2  log®\/z

So:

1

log(x) / 00) 4 _ o [ _loal@) 11— ]
2 - 5 T

r Jy tlog™t Vvrlog®2 log ()

Hence, we observe:

1 7
lim m{w) log(w) = lim blz) Jle. B(x) ~x = m(x)~ ’

]

Thus, we have established this beautiful three-way asymptotic equivalence :
@)~z = ) ~a = W($)~®

Lemma 1.3. Let a,, be a nonnegative sequence and define:

A(x) =) a, and Ay(z) = /1 J:A(t)dt

n<x
Then,
Z(x —n)a, = Ai(x)
n<x
and if Aj(x) ~ Lz¢ as x — oo for some ¢ >0 and L > 0, then
A(x) ~ cLz* ! as x — oc.
Proof. We know that by Abel summation, for any function f(n),

xT

Y anf(n) = A@@)f(z) — | A f (1)t

n<x 1

Taking f(n) = n, we get:
Znan =zA(x) — /j Alt)dt = Z(x —n)a, = Ai(x)

n<x



Now, we choose arbitrary constants 0 < o < 1 and # > 1, and observe:

Bz
Ay (Bzx) — Ar(z) = / A(t)dt > (fx — x)A(x)
1 {Al(ﬁx) B Al(x)} - A(x)

—
-1 x¢ x¢

and

Ai(z) — A(ax) = ' A(t)dt < (z — ax)A(z)

ar

1 {A1<x> - Al(ozx)} L Al)

1—« ¢ ¢ gel

So, as * — 00, we obtain:

: A(z) pge—1
e
A 1—af

lim inf (z) =L a
z—oo gl 1l—«

Now, if « — 1— and § — 1+, then,

lim sup Alz) L lim ik =1L {d(ﬁc)] = Lc
B=1

T—00 xet - =1+ ﬁ —1 dﬁ
A 1¢ — of c
lim inf <:C1) =L lim @ L d(e) = Lc
z—o00 ¢ a—l—- 1 — do a=1
Hence,
A
lim () = Leor Ay(z) ~ La® = A(z) ~ cLa“?

z—o00 ¢l

Theorem 1.3. Define a smoothing function
wi) = [ v
1

Then, () ~ %2 = Y(x) ~x

Proof. Let a,, = A(n) in Lemma 1.3. Then we get 1;(x) ~ "’“"2—2 = ¢Y(x) ~x

5



2 Representation as a contour integral

Lemma 2.1. Let z € C. If ¢ > 0 and u > 0, then for every k € N, we have:

1 /C+°°i u? (1—uwk ifo<u<l
-— dz =
270 Joioi 2(z+ 1) (2 + k)

ifu>1 ’
the integral being absolutely convergent.

O x|

Proof. We first define two different contours for 0 < v < 1 and u > 1 as follows.
Here, R > 2k.

I
! 0 ¢
\
\
\
\

O<u<l u>1

< k, we shall have
F= ol

Now, if |z| = R, then for integers 1 <n
R— lz+n|

z+n| >zl -n=R-n>R—-Fk>

[N

Let z = x + iy. We observe that given our contours, if 0 < u < 1, then z < ¢
and if w > 1, then x > ¢. So, in both cases, ©™" < u~¢. Hence :
u—z < |u—r’
2(z+ 1) (z4+ k)| ~ |z||lz+ 1] |z + K|
2y e
= Rk+1

|u—’iy| =1

Thus, if we integrate this expression over any circular arc, the integral will be
dominated by the expression 27 R % = O(R7*) and this tends to 0 as R — oo.
So, if C'g is any of the two contours shown in the figure above, we shall have :

c+o01 u—? -
dz = d
/C Z(z+1)(z+k)z /Csz(z+1)...(Z+k)ZaSR_>OO

—001

Now we observe that the integrand has simple poles at integers 0, —1,—2,--- , —k
and all these points lie outside the contour for u > 1 and inside the contour for
0 <u < 1. Hence, if u > 1, Cauchy’s integral theorem yields :

1 c+o001 u—z

— dz =
270 Joioi 2(z+ 1) (2+ k) 2=0

6



But if we have 0 < u < 1, then Cauchy’s residue theorem yields:

1 c+0o01 u=? k u_zF(z)
— dz=S Res | —0"
210 Joni 2(z+1)---(2+ k) : Z es <F(z+k+1)’ n)

n=0

Now, we recall that if a function F' has a simple pole at zy and G is analytic at 2,
then Res(F - G, z0) = G(z9) - Res(F, zp). So,

_w ) I -Res(T'(2), —n
Res (F(z +k+ 1)’_") B [F(z +k+ 1)L:_n Res(I'(z), —n)
u" (=)
- I(k+1—n) nl
Thus,
1 c+o00t u=? B k (_u)n
omi J, i 2(z+ 1)--~(z+k)dz B % (k —n)!n!
1 <. [k
=2 ()
1
= H(l —u)F

Hence proved:
If ¢ > 0 and u > 0, then for every k € N, we have:

1 e u? 5 — Ll —wk fo<u<l
2 Jooni 2(z+1)---(z+k) 10 ifu>1 ’
the integral being absolutely convergent. O

Lemma 2.2. For s € C with Re(s) > 1, the Riemann Zeta function is defined as:

o

() =Y

ns
n=1

Then,

¢'(s) _ i A(n) where A(n) = { log(p) ifn=p*aeN

¢(s) ns 0 otherwise

Proof. We have

n=1

1 1 1
=14 — 4+ — 4+ 4...
¢(s) tontntet



1 1 1
1- — T N
=>< S)C(s) +38+5s+7s+

1 1 o1
S R N R O P G
( 3)( 23>C(s) TETETI T

= 3) 3 2w

This holds true because we know that >

1% converges uniformly for ¢ > 1 and

hence the infinite product [] (1 — I%) also converges absolutely. Besides, the

product does not converge to zero and hence we can write

- I (-5)

p prime
1 1 1
S S () X ()
n prime n n = p1p2 pl p2
_ i p(n)
n=1 n’
1 ifn=1
where pu(n) =< (=) ifay=ay=---=a,=1 for n=p{ps>-- pp*
0 otherwise

Now Weierstrass’s Theorem for Series states that if the functions f1(z), fa(2), f3(2), - -
are holomorphic in an open set D and F(z) =Y .-, f;(z) converges uniformly on
every closed and bounded subset of D, then F'(z) is holomorphic on D and for all

k > 1, the series ) 2, fi(k)(z) converges on every closed and bounded subset of D
with limit F*)(z). So, as - is holomorphic if 0 > 1 V n € N and the function
S | L converges uniformly for o > 1, we can write:

n=1 ns
C/(S) _ - ii _ _f: 1Og(n)
_n:1 dsns = '

Now we know that for two sequences a(n) and b(n),

Hence,
¢(s) _ =3[ 2 an (d) log(3) = An)



Theorem 2.1. Ifc > 1 and x > 1, we have:

S [ s ()

Proof. By Lemma 1.3, we know that :

Yi(x) =) (x—n)-An)

n<lz

= SR =X (1-5) A

n<x

And, if we take u = * and k = 1, then Lemma 2.1 gives us :

c+o00t s n :
L_ Mds: (1-3) ?fngx,forc>0
271 Jo_ooi S(s+1) 0 ifn>x
So, .
i L/c+ooz A(n) - (m/n)sds _ Z (1 B ﬁ) An) = ()
=270 Joroei S(5+1) — x x
Now, we note that the partial sums satisfy:
i /c-i-ooz A( ) I/k ‘ Z/c-i-ooz A SL’/]C) Ak) - (x/k)°
k=1 |V c—00t ( c—001 S||S+1|
c+o01 N

NS AG)
‘; e | T Z

k=

where A is a constant. So, the term
i 1 /c—i-ooz' A(n) . (x/n)sd
— ———————ds
= 2m0 Jo s S(s+ 1)
converges absolutely and hence the summation and integral can be interchnaged.

Hence,
¢1 (33) 1 /c+ooi s 00 A(n)
— = ds f >0
x 270 Jorooi S(s+1) ; ps 00T C

Finally, by Lemma 2.2, we get:

i(z) _ b /c+m z (— C,(S)) ds for ¢ > 1

x? 270 Jo_oei S(s+1) C(s)




3 Removal of the pole

Lemma 3.1. If a non-zero function f(s) has a pole of order k at s = a then the

quotient % has a first order pole at s = a with residue —k.

g(s

Proof. As f(s) has a pole of order k at s = a, we can write f(s) = (sfa))k where g

is analytic at a. Using the quotient rule, we get
f(s) = (s —a)*g'(s) — k(s — a)*'g(s)
(s — 1)k
g'(s) kg(s)
(s—a) (s—a)kt!

9(s) {g’(S) k }

(s—=1F Lg(s) s—a
Therefore, ’;((j)) = ZI ((;)) — £ Since g(s) # 0 and is analytic, it follows that % is
analytic at s = a. Hence, % has a first order pole at s = a and the residue is
given by :
!/ /
Res {f (S),s = a] = lim(s — a)f (5) =—k
f(s) s—a f(s)
]
Theorem 3.1. % has a first order pole at s = 1 with residue —1 and hence
_g;’((;)) — L is analytic at s = 1.

Proof. We define the Dirichlet Eta function as :

(1)t 1 1 1

n=1

for a complex number s with Re(s) > 0 and note that n(1) converges to log(2) by
the Maclaurian series expansion of log(1 + z). Now,

C(s) —n(s) = TR ot 1 1.
5) TS = 25 35 4s 25 35 4s

10



Thus,
n(s)
() =11
92s—1
and by this expression, ((s) has a first pole at s = 1. To find the residue, we

compute:

Therefore ((s) has a residue of 1 at s = 1 and by the definition of the Riemann
zeta function, ((s) # 0 for Re(s) > 1. Hence Lemma 3.1 implies that CC/((SS)) has a

first order pole at s = 1 with residue —1. So, 44’((33)) — i is analytic at s = 1. Thus,

_ds)
C(s) s—1

is analytic at s = 1.

In Theorem 2.1, we proved that

wl(‘r) B 1 c+o001 J}s_l CI(S)
= —%/c S5+ 1) (_C(s))d5f0r6>1'

Let g(s) = 8(81“) <_C<I((;))> and s = ¢+ it. Then, it can be rewritten as :

—001

c—1 +o0
¢1(2I) = x2 / glc+ it)e 5@t for ¢ > 1
T T )

We want to prove %—(f) ~ % and so we let x — oo. Now the Riemann-Lebesgue

lemma in the theory of Fourier series states that
+o0 )
lim f(t)e™dt =0

z—oo f_ o

if the integral [*°°|f(t)|dt converges.

11



But by Theorem 3.1, the term g(c+it) has a pole at s = 1, and so f lg(c+it)|dt

¢(s)
qON

doesn’t converge for ¢ > 1. Thus, we will first subtract the pole at s = 1 from

We get the following theorem:
Theorem 3.2. Ifc > 1 and © > 1 we have

wl(x) 1 1 2_ 1 c+o001 LES_I CI(S) 1
oa0) L e g )

Proof. Let ¢ > 0 and > 1. By Lemma 2.1 for k = 2 and u = 1/z, we have:

1 ot s 1 1\?
—/ * dS =—(1--
2710 Joroei S(s+1)(s+2) 2 x

Repplacing s by s — 1 in the integral,
1 2 ctooi s—1
= 1—l :L, L ds for ¢ > 1
2 x 270 Joooi (s —=1)(s)(s+1)
We already had
1 cto01 s—1 /
() :—/ ‘ (—C(S))ds for ¢ > 1.

x? 270 Jo_ooi S(s+1) ¢(s)

So, for ¢ > 1 and x > 1,

77/)1(15) 1 1 2_ 1 c+o01 51 CI(S) 1
v ‘5(1‘5> "m0 e S5 D) (‘«s)‘s—l)ds

Cc—001

O

Now we let h(s) = m (—CC/((SS)) - ﬁ> and s = c+it. Then, it can be rewritten
as :

() 1 1\* ! o N
—Z(1=2) = itlog(z) 1t f, 1
5 5 5 3 h(c+it)e dt for ¢ >

If we let # — oo, and show that [~ " h(e + at)|dt Converges then by Riemann

Lebesgue Lemma, er h(c+it)e ’Ltlog(;p
indeterminate form oo - 0.

o0

To deal with this, we show that it is possible to replace ¢ by 1 in

¢1($)_1(1_1>2:L chosi ot (_c'<s>_ ) )ds
x? 2 x 270 Joooi S(s+1) C(s) s—1

Cc—001

and that the integral f_Jr;o |h(1 + it)|dt converges.

This requires a detailed study of the Riemann Zeta function in the vicinity of
the line 0 = 1 for s = o + it.

12



4 Riemann Zeta Function near o =1

Lemma 4.1. Let s=0c+ it € C. For any N € N and o > 0 we have:

Nl—s
C(s) = ——s/ xS“ dx+ T 1

Proof. Euler’s summation formula states that if f is smooth on [a,b], 0 < a < b,
then

/ F(t)de + / (t— S (e + F) (] — 2) — ) (ly) — )

Taking f(n) =n"% y= N and z — oo, we get for o > 1:

1
C(s) = s
n=1
Yo 1
=) —+) —
nzln n>N
N
1 1 0 —s(t—t]) . |lg]—=2 [N]—-N
= - - B S V) 1 _
;n5+/]V tsdt—l—/N P, dt+ILr§O or NE
N 00
1 1-s _ _
S SN L5 py EL PR S
—~n I—s]y N t° =00 T
N
1 Nl ®(t—t
=> —+ —s/( E])dt
—~mn* s—1 N T

So, we have proved that for o > 1,

les
((s) = ns 8/ xs +1 s —1

If0<a§1,3a6>OsuchthataZ(5andhence

) 1

So, the integral | ]f[o (i:ﬂ)dt converges uniformly for o > § and hence represents an
analytic function in the half plane o > 0. Therefore, by analytic continuation, for

o> 0,
N
1 *x— 7] Ni=s
ZE‘/ L

n=1

13



Theorem 4.1. For every A > 0, there exists a constant M such that |((s)| <
M log(t) with o > 1 satisfying o > 1 — IOL and t > e.

g(t)
Proof. If ¢ > 2, we have

=1 =1
21 ns Z |na+zt| Z E S Zl ﬁ - <(2>

and so |((s)| < M log(t) holds trivially.

() =

Therefore we assume o < 2 and ¢ > e. We then have
|s| = |o+it| < |o|+]t| < 24+t < 2tand |s—1| > [(c—1)+it] = /(0 — 1)2 + 2 > t.
By Lemma 4.1, for any N € N and o > 0 we have:

1 * gz — [z] N1=s
<<S):Z$_8/N xSt +s—1
n=1
Then
N
1 < x — [z] Nli=s
< — d N
¢(s)] < ;n +‘st i a:’+ P
N
1 <1 Ni=o
< — + 2t d
_;ng+ /N g
B i S A
B —~n? oN° t
We take N = [t] and so log(n) < log(t) if n < N. Besides, we also choose o > 1
satisfying o > 1 — and t > e. So,
l1-0o og(n
o -t <l < Lo (1),
n? n n n n

NowasNSt<N+1andaE%,weget

20 AN+ :0<1+i) — 0(1) and Nl_azﬂizo(i) — o).

oN° — %N N t t N° N
Hence
)<Y~ +0(1)=0 (Z %) +0(1) = O(log(N)) + O(1) = O(log(t)).

So, this implies that for every A > 0, there exists a constant M such that |((s)| <
M log(t) with o > £ satisfying o > 1 — log and t > e.

]
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Theorem 4.2. For every A > 0, there exists a constant M such that |('(s)| <
M log?(t) with o > 3 satisfying o > 1 — ﬁ andt > e.

Proof. If ¢ > 2, we have

i 1og

n=1

IC(s)] =

1 1
foﬁw Z ot <Z %5 _ jo2)

and so |¢'(s)| < M log®(t) holds trivially. Therefore we assume o < 2 and ¢t > e
and this gives us the inequalities |s| < 2t and |s — 1] > t.

We had shown that for any N € N and o > 0,

This yields:

n=1 N
/oox—[a:] N'"log(N)  N'—
N st s—1 (s —1)
So,
log (x — [z]) log(x) - [z]
!
¢'(s)] S ‘ / x5+1 dx| + /N pov dz
N1 Slog(N Ni=s
s—1 (s —1)2
N
1 > log(x) > 1 N'=9log(N) N'°
Slog(N);E—i—Qt/N o) dx—l—/N xaﬂdx—l— ; + v
N
1 log(N) 1 1 N'=9log(N) N
= log(N — + 2t
o8 >;n"+ ( oN° +O'2NU>+UNU+ t * t2
We take N = [t] and so log(n) < log(t) if n < N. Besides we also choose o > 1

satisfying o > 1 — and t > e. So, we get the relation — = O (%) Thus

10g(

15



cormo () o (U5) 0 i)

+o(o5) +o(w) +0<Nt—)
= 0 (log*(N)) + O (log(N)) + O(1)
= 0 (log*(1))

So. this implies that for every A > 0, there exists a constant M such that
¢'(s)] < Mlog®(t) with o > £ satisfying o > 1 — @ and t > e.

Lemma 4.2. If 0 > 1 we have (3(c) |((o +it)|* |((o + 2it)] > 1.
Proof. By Lemma 2.2, we have that if o > 1,

¢(s) __N~Am)
¢(s) 2

n=1

Hence for o > 1

logc(s)) = [ s
()
= — i / %ds 2 ATE:L) converges uniformly for o > 0

. A
= Z & +C where C is a constant.
< n*log(n)

So, we get that ((s) = () where G(s) = Z _Al)

4+ C for some constant C.
n®log(n)

Thus, if 0 — oo, then G(s) — C or ((s) — €. But we know that ((s) — 1 as
o — 00. This implies ¢¢ =1 or C' = 0.

16



So, we have established that ((s) = e“(*) where

[e.e]

1og
G(S) = nZ; ns log Z Z log Z Z mpms Z Z mpmaezmtlog(p)

This implies

s)| = exp (Z Z ;n;:i(p ) = exp (Z Z cos(mt log > '

p m=1 p m=1

We apply this formula repeatedly for s = 0, s = o +it and s = ¢ + 2it, and obtain

¢*o) (o +it)[* (o + 2it)]

~e (T3

p m=1 p m=l1 P =1
3 + 4 cos(mtlo + cos(2mt lo
— exp ZZ ( g(]?))mg ( g(p))
p m=1 mp

But we have 3+4 cos(6) +cos(20) = 3+4 cos(f) +2 cos*(#) —1 = 2(1+cos(#)* > 0.
Therefore each term in the infinite series is nonnegative and hence

¢*(0) I¢(a +at)|* |¢(o + 2it)| > 1.

Theorem 4.3. ((1+it) #0 V teR

Proof. 1f t = 0, the relation is trivial and therefore we assiume ¢ # 0. Lemma 4.2
yields that if o > 1, then 3(0) |((o 4 it)|* |((o + 2it)] > 1 or

U—i-zt

{0 - 1P :

‘|K +mm>—i—

Now if we let 0 — 1+, we will have (¢ — 1){(0) — 1 since ((s) has residue 1 at
the pole s = 1. Besides ((o + 2it) — ((1 + 2it). Now if we assume that for some
to # 0, we have ((1 + ity) = 0, then

. 4 . . 4
t to) — C(1+ 1t
llm <(U + ¢ 0) — hm C(O- + G 0) C( _'_ ¢ 0) — ‘C/(l + Zto)‘4
o—=1+| o—1 o1+ o—1
Hence we obtain [¢/(1 + ito)[*|¢(1 + 2ite)| > limy_,14 — , which tends to +oo.

So we arrive a contradiction, i.e. our assumption Was wrong. Thus proved:

C(1+it) 40V t R

17
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L

Theorem 4.4. There is a constant M > 0 such that RO

¢(s)
¢(s)

< Mlog"(t) and

< Mlog® (t) whenever o > 1 and t > e.
L

Proof. For 0 > 2 we have |7 ’Zn ) ns < > 5 =((2) and so
M log’ () trivially. Let 1 < o <2 and t > e. By Lemma 4.2, we have

1
¢(s)

<

¢*o) 1¢(o +it)* |¢(o +2it)| > 1 or < < (*M()l¢(o + 2it)

1
[¢(o +it)]
Now as (o — 1){(0) is bounded in the interval 1 < o < 2, there exists an absolute
constant M such that (o — 1){(0) < M and hence (o) < 2L

Also, by Theorem 4.1, |((0 + 2it)| = O(log(t)) it 1 < o < 2. Hence, there

exists an absolute constant A such that G + o < f‘zj_‘igll)/i /(?
Therefore, for some constant B > 0 we have
B(o —1)3/4
IC(o +it)] > u, ifl<o<2andt>e.

log'/*(t)

We also note that this inequality holds trivially when o = 1. Hence, we have

established that for 1 <o <2 and t > e, we have [((o +it)| > = 1/4)(3;4'

Now, assume that 1 <o <2 and ¢t > e and let a be any real satisfying 1 < o < 2.
Then either 1 <o <a<2orl<a<o<2.

Ifl1<o<a<?2t>e, then Theorem 1.8 yields that for some constant K; > 0,
Cla+it) — Clo +it)| < / 1w+ it)|du < (o — 1)) log(2).
Hence, by triangle inequality,
[C(o +it)| = [C(a+it)| — |C(o +it) — ((a +it)]
> [¢(a+it)] — (o = 1)K, log?(¢)
B(a —1)3/4
log"*(t)
Andif 1 <a <o <2, thent > e, then

B(oc —1)%* _ Bla—1%* _ B(a—1)3*
log"'(t) — log'"(t) T log''(t)

— (a — 1)K, log?(t)

(o +it)] > — (o — 1)K, log(t).

18



Combining both we conclude that if we have 1 < ¢ < 2 and ¢t > e, then for
every « € (1,2), there exists some constant K > 0 such that

o — 1)3/4
(o) = ZET0 — (0 - D ogtn)

4/9
If B<2K,let ty = e(%) . Then we choose a =1+ (%)4 m and notice that

l<a<2forallt>ty. And since ty < e, we will have 1 < o < 2 for all t > e. So
we can substitute this value of « in the inequality to obtain:

(&) ww) BV
) 2K/ log(t) 2
+at)| > - = K log”(t
|C(O’ ? )| = log1/4(t) (QK) 1Og9(t) 0g ( )
B* 1 B* 1
~ 8K31og'(t) 16K31log’(t)
B* 1
= = ¢ where C' > 0

16 0gT() ~ log'(0
And if B > 2K, we choose o« = 1 + ——5—
substitution we get:

B 1 3/4
)l > (210g (t))

log!/4(t)  2log”(t)
S B 1 K 1
— 284 00g"(t) 2 log'(t)

1 K 1 (04
= —_— B — = h !
29/ ( 21/4) og'(0) — logi(p) >0

So, we have established that there exists a constant M > 0 such that ‘ﬁ‘ <

M 10g7(t) whenever 1 < o <2 and t > e. Previously we had showed that this also
holds for ¢ > 2. Hence we can say that there exists a constant M > 0 such that

210g o) to have 1 < a < 2 for all £t > e. Upon

|C(o + it K log?(t)

< Mlog’(t) whenever ¢ > 1 and t > e.

1
(s)

Now by Theorem 4.2, there exists another constant N such that [¢’(s)| < N log?(t)
whenever ¢ > 1 and t > e. So, we can have a positive constant P = M N such

that C(()) < Plog’(t).

dls)
(s)

1

0] = O(log”(t)) whenever ¢ > 1 and

= O(log'(t))

Thus proved:
t>e.
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5 Revisiting the contour integral

Theorem 5.1. For x > 1 we have

1 1\> 1 [+ .
¢1(£E) L (1 . _) / h(l + it)eztlog(m)dt

22 2 ) on

where the integral fj;o |h(1 4 dt)|dt converges.
Proof. In Theorem 3.2, we had proved that if ¢ > 1 and = > 1 we have

2 cto0i
SRR

2 2 z :ﬁ

c—001

where h(s) = Lt (‘i o %1>

We now consider the following rectangular contour R on the complex plane.

t
w V| +iT c+iT
——————
- F
] 1 ¢
—_— -
| —iT c~—IiT

Now as the term x*"1h(s) is analytic inside and on R, Cauchy’s theorem gives
Jr 2" h(s) = 0. So,

c +T 1 -
/ x"_l_iTh(a—iT)d0+/ xc_1+“h(c+it)dt+/ ara_1+iTh(0+iT)da+/ " h(1+it)dt = 0
1 =T c +T
or
/ :E”_l_zTh(J—iT)da—i—/ I (et )dt = / a:"_lJ”Th(a—l—iT)da—i—/ o h(1+it)dt
1 -7 1 -
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Now we note that for s = ¢ + T and for s = o — T,

¢'(s)
¢(s)

And so by Theorem 4.4, if T > e, |h(s)| = O (%ﬁ#) +0(&) =0 (log;#)
Hence

/ 47T — iT)do = O ( / g Mo (1) (T)) ~0 ((c — 1)1 M1oe T (T))

and

/1 27T (g +iT)do = O ( /1 et Mloe (1) bgg(T)) ~0 ((c —p)per Mg ) 108"9(T>> .

A
|

()] <

1
s(s+1)"

1 ‘ 1
(s—=1)s(s+1)| — 17

T? T?

Therefore, as T' — oo these integrals tend to 0. Hence we can write

+o0 +oo
/ mc_1+ith(c+it)dt:/ T h(1 + it)dt.

[e.o] —0o0

And therefore,

c—001

w (x) 1 1 2 1 c+o0t .
;2 — E 1-— E = % x 1h(5)d$

1 oo
T J _o
1 oo
= 2— €Zt IOg(x)h(l + Zt)dt
T J _xo

Besides, |h(1 4 it)| = O (Ml(;—;gg(t)) and as

+oo —e +e +oo
/ |h(1+z’t)|dt:/ |h(1+z’t)|dt+/ |h(1+it)|dt+/ Ih(1 + it)|dt,

0 —00 —e +e

the integral fj;o |h(1 + it)|dt converges.
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Theorem 5.2. For x > 1, ¢y (z) ~ % This implies that 7w(x) ~

the Prime Number Theorem is proved.

@ and hence

Proof. In Theorem 5.1, we proved for x > 1 we have

1 1N 1 [t .
¢1($) L (1 . _> / h(l + it)eztlog(m)dt

x? 2 ) " or e

where the integral fjoooo |h(1 4 it)|dt converges.

Now by Riemann Lebesgue Lemma, fj;o h(1 + it)et 8@ dt converges to 0 as
x — 0. Hence we get:

1 1\? 1
lim (21C) ——(1- - =0or lim (21C) = —.
2—00 xr2 2 T oo 12 2

This implies: ¢ () ~ % Now by Theorem 1.1, 1.2 and 1.3 we can say that

2

x x
() ~ 5 = Y(r)~r = o(r) ~r = 7(r) ~ og()’
Therefore the Prime Number Theorem is proved. O]

Conclusion

As elegant as this proof is, the method relies highly on complex analysis although
the statement of this theorem does not itself involve complex numbers. So in
search of a simpler proof, mathematicians Atle Selberg and Erdés published new,
independent elementary proofs of the prime number theorem in 1948 using proper-
ties of logarithms. These proofs enticed other mathematicians to consider similar
methods for number theory conjectures previously considered too profound for
such seemingly simple methods. Many exciting results followed, including Helmut
Maier’s 1985 elementary proof showing unexpected irregularities in the distribu-
tion of primes. Then in 1980, Newman gave a shorter proof that provided a much
simpler link between the zeta function and the prime number theorem. So to sum
up, the Prime Number Theorem is one of the most interesting gems of number the-
ory and mathematicians may never stop searching for new and more illuminating
paths to the prime number theorem.
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L Date...29:01:2022

RECOMMENDATION LETTER

To Whom It May Concern

My name is Ravinder Pathania and I highly recommend Ridam Kapoor who has worked

under me as an aspiring content writter intern over a span of one month.

I can assure you that Ridam Kapoor has good work ethics and exemplary skills. She is a

constanttop performer and she has exceeded in her work.

She is resourceful, effective and a solution oriented person. Her learnability has always been

aremarkable quality.

[ strongly recommend Ridam Kapoor as an excellent and professional worker. [ am willing to

provide more information if needed.

Warm Regards

Ravinder Pathania
(GM Publication)
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Mob.98729-87088

email : pathania@mbdgroup.com
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Phones : 0181-2458388, 2457160, 2455663
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LETTER OF COMPLETION

To Whom it May Concern

We are glad to inform you that Ms. Ridam Kapoor from Sri Venkateswara
College (New Delhi) has successfully completed her internship at ‘MBD Group’

from 20" December, 2021 - 24" January, 2022.

During her internship, she was exposed to research and paper work on

Mathematics book for 8" standard.

We found her extremely inquisitive and hard working. She was very much
interested to learn the functions of our core division and also willing to put her best

effortsand getin depth of the subjectto understand it better.

Her association with us was very fruitful and we wish her all the best in her

future endeavours.

Ravinder Pathania

(GM Publication)

MBD Group of India
Mob.98729-87088

email : pathania@mbdgroup.com

Corporate Office: Gulab Bhawan, 6, Bahadur Shah Zafar Marg,
New Delhi-110002, INDIA

P: +91 11 30912345, 30912301, 30912330, 41509091

F: +91 11 23319471 W: www.mbdgroup.com

MBD House, Railway Road, Jalandhar (Punjab)
Phones : 0181-2458388, 2457160, 2455663
Fax : 0181-2230303, 2227388




i The Polymath Ir program - jayati X -+ v = X

<« > C & mail.google.com/mail/u/0/?tab=rm8&ogbl#search/alexandra+ +seceleanu/FMfcgxwlLtQSQGItCCkjhrZDGhxnjzZlh ® B W » 0O m

$ Gmail Q  alexandra seceleanu = ® 533

« 8 0 & s 17 of 28
l— Compose
hox The Polymath Jr program Inbox X & B
nbo;
Starred Polly Matthews <thepolymathjr@gmail.com> Sal,10Apr2021,0719  ¥¢ & i

Snoozed to adam.sheffer, zberikkyzy, Steven, Johanna.N.Franklin, cdoneill, Patrick, brubaker, Alexandra, Yunus, Jonathan.Farley, vhm, sk206, zehrabasiyanik, abd ~

Dear Polymath Jr applicants,

Important

If you are receiving this email, then you are officially accepted to the Polymath IR program. We are excited to do some serious math work
Chats with you during the summer!

We received more applications than we expected. To make sure that the participants have a good experience, we don't want the research
groups to be too large. For that reason, many other people are currently on a waiting list. We are recruiting more professors, who would run
more projects, which would hopefully allow us to accept more applicants.

If you intend not to participate in the program, please let us know as soon as possible. For example, if you plan to participate in another

W New meeting summer program. That would allow us to accept people from the waitlist.

E3  Join a meeting Applicants who are no longer students in the fall of 2021 or who didn’t start college yet were automatically placed on the waiting list. We
might have missed a few of those. If you are no longer an undergrad in the fall of 2021 or have not started college yet, please let us know
now. Contact Adam at Adam.Sheffer@baruch.cuny.edu.

Hangouts
) The program will run from June 21st to August 15th. We are now recruiting more staff and building other parts of the program. So you
OlJayan ” probably won't hear from us for 2 while. Possibly for over a month. If you have any questions, you are welcome to write to Adam.

Arav Agarwal At this point, no one is assigned a project. The first week of the program is dedicated to learning about the projects and ranking your
preferences. That means that you cannot prepare towards your project yet. If you do want to prepare, we recommend practicing your proof

lol
© writing skills. This would be important for almost all projects.

ﬁ \ Katha Rajan
&b

Vil s G vidES Looking forward to meeting you!

The Polymath Ir team
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M Welcome to the Computational /X + v = X

« - C 8 mail.google.com/mail/u/0/?tab=rm&ogbl#search/alexandra++seceleanu/FMfcgzGkXwIxVGDJcrmvxPZzLVqGRPTq ® @ & & O m :

= ? Gmail Q, Search mail ® &

= 8 0 8 1 : 11 0f 28
l— Compose

Welcome to the Computational Algebra project!

Inbox

Starred Alexandra Seceleanu <aseceleanu@unl.edu> $at, 26 Jun2021,10:36 Yy &

Snoozed to aryamanmaithani.iitb@gmail.com, shivam.j.mohite@Vanderbilt.Edu, manavbatavia@gmail.com, audric.lebovitz2002@gmail.com, WANGSHES@UCI.E ~

Important Hello everyone,

Chats If you are receiving this email, you have been assigned to Polymath's Computational Algebra team. Welcome aboard! There are 20 students

on this team currently.

The first order of business is to set up meeting times for the next weeks of the program. To help us do this, please fill out the poll at the
B New meeting following link (type your name on the left and click sign in) https://www.when2meet.com/?12193319-LKR8A
E Join a meeting
| am planning two meetings for next week: a tutorial in Macaulay2 and a general meeting to discuss the exercises in the introductory
Hangouts document. Now that you know you have been assigned to this project, please start working on these exercises. You are encouraged to
‘ v collaborate and share your solutions in the following Overleaf document https://www.overleaf.com/project/60b511a08bb39205efb83610 (
ayati ~
click on Exercises.tex and then Recompile)
Arav Agarwal
ot As always, if you have questions please reach out on Discord or via email.
ﬁ. Katha Rajan

%~ - B4 You were on a video call
Alexandra
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Signature of the candidate Signature of the guide
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Alternating Sign Matrices

Student: Jayati Sood Mentor: Dr. Arvind Ayyer

ABSTRACT

An Alternating Sign Matrix (ASM) is a square matrix consisting of 0’s, 1’s and —1’s such
that the entries in each row and each column sum to 1 and the nonzero entries in each row
and each column alternate in sign. They arise naturally in the evaluation of A-determinants,
which are a generalisation of determinants obtained by modifying the Dodgson algorithm
for determinant evaluation. Just as regular determinants may be expressed as a sum over
permutation matrices, these A-determinants can be expressed as a sum over alternating sign
matrices.

These generalizations of permutation matrices have connections with various combinatorical
objects. This report details the topics covered over the course of SRFP 2021, in a guided study
of concepts in algebraic combinatorics, from the perspective of alternating sign matrices.
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1. INTRODUCTION

Definition 1.1. An alternating sign matrix is a square matrix consisting of 0’s, 1’s and —1’s
such that the entries in each row and each column sum to 1 and the nonzero entries in each
row and each column alternate in sign.

Example 1.2.
00 1 0
10 0 0
01 -1 1
0 0 1 0

1.1. The ASM Conjecture. Let A, the number of n x n alternating sign matrices, and let
A, i, denote the number of n xn ASMs such that the (1, k)™ entry is 1. D.Robbins, H.Rumsey,
and W. Mills discovered that dividing the set of n x n ASMs into classes according to the
position of 1 in the first row results in a Pascal’s triangle-like pattern:

1 1 2/2
2 3 2 2/3 3/2
7 14 14 7 2/4 5/5 4/2
42 105 135 105 42 2/5 7/9 9/7 5/2
429 1287 2002 2002 1287 429 2/6 9/14 16/16 14/9 6/2
FIGURE 1. Number of ASMs of FI1cUrE 2. Ratios of adjacent
order n such that a j = 1 terms from Figure 1

They also found that ratios of horizontally adjacent entries, themselves form a pattern (Fig
2). The n'" row starts with 2/(n + 1) and ends with (n + 1)/2. The striking observation is
that each ratio appears to arise from the two ratios diagonally above, by adding numerators
and adding denominators. This led to the following conjecture:

Conjecture 1.3. (The refined ASM conjecture) Forl <k <n,

Aue G +GZ) k@n—k—1)

An,kJrl - (nﬁgzl) + (nﬁgil) - (n - k)(n +h— 1)

Mills, Robbins and Rumsey also conjectured the formula for computing A,,. This was proven
by Doron Zeilberger (’96), and separately by Greg Kuperberg ('96).

Theorem 1.4. (The ASM theorem) The total number of n x n alternating sign matrices

18
n—1

Ap=Api11 = H
3=0

(35 + 1)!
(n+7)!

1.2. Objects enumerated by ASMs.

1.2.1. Descending plane partitions. A descending plane partition (DPP) of order n is a 2-
dimensional array of positive integers less than or equal to n such that the left-hand edges are
successively indented, there is weak decrease across rows and strict decrease down columns,
and the number of entries in each row is strictly less than the largest entry in that row.
George Andrews in 1979 conjectured a formula for counting DPPs of order n, which when
computed for small values of n, was found to equal the the number of ASMs of the same
order.



1.2.2. Totally symmetric self-complementary plane partitions. A totally symmetric self- com-
plementary plane partition (TSSCPP) is a plane partition that is symmetric, cyclically sym-
metric, and equal to its complement. Andrews proved in 1994, that the number of TSSCPPs
in a 2n x 2n x 2n room is equal to the number of ASMs of order n.

1.2.3. Alternating sign triangles. An alternating sign triangle (AST) of order n is a triangular
array (a; j)i<i<n, i—n<j<n—i With entries in {0, £1}, such that all (i) row sums are 1, (ii) non-
zero entries alternate in each row and column, and (iii) the topmost non-zero entry in each
column is 1, if it exists. In 2020, A. Ayyer, R. E. Behrend, and 1. Fischer showed that the
number of ASTs of order n is equal to the number of ASMs of the same order.

While A,, enumerates these objects, a bijection between any pair of these has not been found.

1.2.4. Aztec diamonds. For an ASM A of order n, let u(A) be the number of (—1) entries
in A. Then, a 2-enumeration of ASMs is Y124 = 27(+1)/2 " This is also the number of
domino tilings possible for an Aztec diamond if order n.

2. DonpGSON CONDENSATION (1866)

Dodgson condensation is an algorithmic technique to evaluate the determinant of an n x n
matrix by iteratively computing 2 x 2 determinants. The algorithm itself is an application
of the previously established Desnanot-Jacobi adjoint matrix theorem (1833). The definition
of the determinant may be generalised by modifying Dodgson’s algorithm in a specific way
to obtain A-determinants (as defined further), the evaluation of which first gave rise to alter-
nating sign matrices.

Let M = (m;;) be an n x n matrix. For S,T € [n] = {1,...,n}, let M2 be the matrix
obtained by deleting the rows in S and columns in 7" from M. If S = {i} and T' = {j}, then
M is the matrix that remains when the i row and j*™ column of M are deleted.

Definition 2.1. The cofactor matriz M of an n x n matrix M is defined as follows:
(M) = (=1)"7|M]|
Multiplying M by its cofactor matrix M¢, we get for i = j

Ut o4 (1) g | M

(M- M), Z Mg (M) = (1) (my 1 | M| —
k=1
= [M]|
And for ¢ # j we get the determinant of the matrix with row ¢ replaced with a duplicate of
row j, and hence

(M- M), Z M (M)gi = (=174 (my o [ M| = myo| M3| + ..+ (1) my| M,
=0
M| 0 0 - 0
0 [M| o0 0
M-M€ =1 0 0 |M| 0
0 0 0 - |M



= M| [M] = |M|"
= M =M

Considered in the polynomial ring C[m,1,m12,...,my, ] where all ?m”s are treated as
formal variables.

Theorem 2.2. (Desnanot-Jacobi adjoint matriz theorem) If M is an n x n matriz,
then

17
MMy | = M{[[Myy] = [ My]| MY

Proof. Starting with M, replace the (4, 7)™ entry with d;,j (where ¢ is the Kronecker delta)
to obtain a new matrix M*, and evaluate its determinant:

M 000 0 (=)

ML 10 0 (<L

| BBE 000 0 (1 agg
(~1"ML ] 0 0 o 1 My
(UM 0 0 0 =]

= |M{||M?| — | M} | M| Multiplying M and M* and taking the determinant, we get

‘M| ml’g m1,3 e 0
0 moa mags 0
‘M.M*|: 0 m32 M33 - 0
0 mmg mn,g e |M’
= |MP|M{

Equating the determinants, we have shown

1,
MM = (MM — (MM

Dodgson’s Algorithm
Dodgson realised that the Desnanot-Jacobi theorem could be expressed in the form of an
algorithm to compute the determinant of an n x n matrix:

_ MM — [ M| | M

{1,n}
‘M{l,n}‘

| M]|

This definition of the determinant can be generalised as follows.

Definition 2.3. The A-determinant of an n x n matrix is given by
MM+ AL AT

\M{{fjﬁ}}h

| M|

with |y = A, and |a|y = a.

Remark 2.4. |a; ;| is a Laurent polynomial of A for any n.
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Theorem 2.5. (Robbins-Rumsey, '86): Let M be an n x n matriz with entries a; j, Ay,
the set of n x n alternating sign matrices, Z(B) the inversion number of B, and N(B) the
number of -1s in B. Then,

n

My = D1 NE @4 A HNB) TT a2
BeA, i,j=1

The alternating sign matrix conjecture was thus motivated by counting the number of sum-
mands in the above expression.

3. PLANE PARTITIONS

George Andrews in 1979 conjectured a formula for counting descending plane partitions (ref).
It was observed that the number of descending plane partitions of order n, was the same as the
number of ASMs of the same order. While numerical evidence suggests a bijection between
ASMs and DPPs, attempts to establish such a bijection have so far been unsuccessful.

To understand plane partitions, we first define partitions:

Definition 3.1. A partition \ of a non-negative integer n is a sequence (A1, ...,\;) € N¥
satisfying A\ < ... < Mg and D)\, =n

Partitions can be represented by their Young diagrams, where each part )\; is represented by
the i'" row of \; unit squares. Each row is left-justified:

HEEN [

4 3+1 2+2

F1GURE 3. Young diagrams of some partitions of 4

Definition 3.2. A plane partition is a rectangular array of non-negative integers m =
(4, J)ij=1 satisfying m; ; = m; j1, and m; ; = w41 5.

Equivalently, a plane partition is an arrangement of unit cubes in a room, stacked against
one corner.

3.1. Generating function for plane partitions. MacMahon showed that the generating
function for plane partitions can be expressed as

[oe} e} 1
Moo =[] s
n=1 k=1 (1 - q )
Let pp(n) =number of plane partitions of n, and let |7| :== > m;; = n.
ij=>1
Definition 3.3. A standard Young tableau (SYT) of a partition A - n is a filling of its Young

diagram with unique entries in [n] such that the entries increase along each row from left to
right, and along each column from top to bottom.

Definition 3.4. The shape of an SYT is the partition A, the Young diagram of which the
SYT is a filling of.



Definition 3.5. For a cell ¢ in the Young diagram of A, let the hook of ¢ be

H(c) = {cells to the right of ¢ in its row and to the bottom of ¢ in its column}

Let
f>‘ = No. of SYTs of shape A,
h(c) = [H(c)|
then,

Theorem 3.6. (Hook-length formula, Frame-Robinson-Thrall, 1959):  For any
partition A = n and ¢ a cell in the Young Diagram of A,

=

n!

LTh(c)

3.1.1. The Robinson-Schensted-Knuth (RSK) Algorithm.
There exists a bijection between pairs of SYTs (P, Q) of the same shape A - n and permu-
tations 7 € S,,. This can be proven using the Robinson-Schensted-Knuth (RSK) algorithm.

Definition 3.7. Define a near Young tableau (NYT) of a partition A - n as a filling of its
Young diagram with entries from an arbitrary set of integers, satisfying the same conditions
as an SYT.

Row Insertion : Let P = (P; j) be an NYT and k ¢ P. Then we add k to P to obtain a new
NYT denoted P « K as follows:

(1) Let r be the least integer such that P, > k. If no such r exists, add k to the end of
row 1 and call the tableau P < k

(2) If r exists, replace k' = P;, by k, and call this process bumping. Then insert k" in
row 2 like in (1)

(3) continue this way until we add a new element as the last element a (possibly empty)
row to obtain the NYT P «— k

We use row insertion for the RSK algorithm as follows:

- Given 7 € S,,, write 7 = (71, T2, ..., T,) in one line notation
- We will inductively construct pairs of tableaux (Py, Qo), (P1,Q1), - - -, (Pn, Qrn) where
P;, Q; have i cells Vi, and shape(P;) = shape(Q;)
(1) Set (P, Qo) = (¢, )
(2) Given (P;—1,Qi—1), set P; = P;_1 < m;. Then add i to Q;—; so that shape(F;) =
shape(Q;). Then P = P,,Q = Q,

Thus, P is the ”insertion tableau” created by successive row insertions of entries in 7, and @
is the ”"recording tableau” which records the changes made to the insertion tableau, in each
implementation of the RSK algorithm.

Theorem 3.8. The RSK algorithm gives a bijection between S, and the set of pairs (P, Q)
of SYT of the same shape A —n

This can be proven be defining the inverse, i.e, (P,Q) — m. We can do this by going in
the backwards direction of the RSK algorithm by an ”inverse bumping” procedure and thus
constructing the permutation in reverse order.

Definition 3.9. A column-strict plane partition (CoSPP) is a plane partition in which the
non-zero entries decrease strictly along columns.

The shape sh(P) of a CoSPP P is the partition, the Young diagram of which it is a filling of.
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3.1.2. RSK’ algorithm. We now want to define an analog of the RSK algorithm to obtain a
bijection between rectangular matrices with non-negative entries, and pairs of CoSPPs. To
do this, we first define a new row insertion algorithm as follows:

Row Insertion : Given a CoSPP P = (P;;),k > 1, the CoSPP P « k is constructed as
follows:

(1) Let r be the smallest entry such that k > Py ,. If no such r exists, append k to the
first row to obtain P «— k

(2) If such an r does exist, replace k' = P;, by k in the previously described ”bumping”
manner, and row insert &’ into row 2 in the same way

(3) continue this way until we add a new element as the last element a (possibly empty)row
to obtain the CoSPP P « k

Two line representation of a matriz : Each rectangular matrix A with non-negative integer
entries has a unique 2-line representation:

A= <’LL1 ug ... un>
V1T V2 ... Up
satisfying

a. Uy = Uz = ... = Uy
b. if i < j and w; < uy, then v = V)
¢. no. of columns in A = (;) = a;j in the two line representation of A

We use row insertion for the RSK’ algorithm as follows:

- Given an r x s matrix A with non-negative integer entries, write A in two line notation
- We will inductively construct pairs of CoSPPs (Py, Qo), (P1,Q1),-- -, (Pn, @) where
P;, Q; have i cells Vi, and sh(P;) = sh(Q;)
(1) Set (POaQO) = (¢a ¢)
(2) At the i*" stage given (P;_1,Q;_1), set P = P;_1 < v; and add u; to Q;_; such
that Sh(Pl) = Sh(QZ)

Note that equal entries of @ are inserted from left to right.

Lemma 3.10. The correspondence A RSK, (P, Q) is a bijection from the set of r x s matrices
with non-negative integer entries to the set of pairs of CoSPPs of the same shape such that
the largest part of P is at most s and the largest part of Q) is at most r.

We can construct a single plane partition from a pair of CoSPPs.

Definition 3.11. Let A be a partition with distinct parts (strict partition). Then, the strict
shape/ shifted diagram of X is obtained by left-justifying the rows of its Young diagram in a
staircase shape.

Let A, be strict partitions with I[(A) = A(u), where [(\) = no. of non-zero parts of .
Construct a new partition p = p(\, ) by merging the strict shape of A, and the conjugate of
the strict shape of u along the staircase shaped diagonal. Merging thus consists of deleting
the [(\) leftmost cells in the shifted Young diagram of A, and fitting the Young diagram of
the conjugate of u along the staircase-shaped cavity appropriately, as shown.

7



A=(531) p=(6,3,2) conjugate of the
strict shape of |4

FiGURE 4.

Definition 3.12. The rank of a partition A is the largest j such that \; > j

Lemma 3.13. The map (A, 1) — p(A, 1) is a bijection between pairs of strict partitions with
I(A\) = k and partitions with rank k. Then,

lp| = Al + || = 1(N)

Proof. If I[(\) = (1) = k, then merging takes place along the k leftmost cells of the shifted
Young diagram of XA to form p. Splitting p along the top left diagonal of length k, results in
the original two strict partitions, hence the merging process is a bijection between pairs of
strict partitions of length k, and partitions with rank k. Since merging requires the deletion
of I(A) leftmost cells and subsequent addition of I(u) cells, we get

lp| = Al + || = 1(N)
O

Given CoSPPs P, @ of the same shape, we can thus apply p to each column of P and @Q to
form columns of a plane partition 7 = w(P, Q). Define the conjugate ©" of 7 as the partition
obtained by replacing the i*” row of 7 by its conjugate.

Lemma 3.14. 7 is a plane partition

For a CoSPP P, let

~
I

Z Pi7j7
u(P) = no. of parts of P, and
max(P) = max(P;;).
And for a plane partition 7, let
m| = Z Ti,js
col(m) = mno. of columns of 7, and

row(m) = mno. of rows of «

Note that maz(P) = max(r) = row(w’), maz(Q) = row(r) = col(7’) and |P|+ |Q| —v(P) =
| = [7].

Theorem 3.15. Let pp, s(n) denote the number of plane partitions of n with at most r rows
and s columns. Then,

7 S
Z pprs(n)q" = H H 1_qu+]_1

n=0 i=1j=1
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Proof. Let A,«s be a matrix with entries in N. Perform the RSK’ algorithm on A to obtain a
pair of CoSPPs (P, @), and further obtain the corresponding plane partition 7(A4) = 7(P, Q)
by the previously described process.

In a given column in the the two-line representation of A, let i be the entry in the first row
and j be the entry in the second row. We know that each such column occurs a; ; times, and
inserts j in P and ¢ in ). Therefore, we have

Pl = Y aij*j

maz(P) = ;jax{j\ai,j £ 0}
and,
Q = Zam *
maz(Q) = ;jaxmai,j £ 0}
— |m(A)] = [P| + Q| — p(P) = Dai;(i+j—1)

Z'7j
By definition, for 7 a plane partition with at most r rows and s columns, we have

> pprs(n)g” = Zq‘”‘

n=0
Z a;,j(i+5—1)

3 o

7"><S

ﬁﬁ Z qai,j(i-i-j—l)

i=1 j=1 aijZO

[T (=)

1j5=1

Let pp,(n) = number of plane partitions of n with at most r rows.
Corollary 3.16.
(1) > ppr(n)q" =[] (I—’C)’#(’“)
n>0 k=11

(2) ¥ pp(n)g" = 11 G=gmyr

n=0 k=1

The proof follows from theorem 3.15

3.2. Descending plane partitions.

Definition 3.17. A descending plane partition (DPP) is a plane partition satisfying the
following;:

(i) entries in the array decrease weakly across rows
(ii) on successively indenting the left edges of the array in a staircase form, entries decrease
strictly along columns
(iii) the number of columns in any row is strictly less than the largest entry of that row
(iv) the number of columns is any row is greater than or equal to the largest entry of the
row below it



S N

w vl O

N Wb D
N

FIGURE 5. A DPP of order 7

A DPP has order n if each entry in the array is less than or equal to n

Theorem 3.18. (Andrews, 1979): The number of descending plane partitions of order n
is equal to the number of ASMs of the same order, and is given by

n+i+j5—1
Do=tn= 1 5551
1<i<j<sn

3.3. Totally symmetric self-complementary plane partitions. Let m be a plane par-
tition in an a X b X ¢ room, i.e, ™ has at most a rows, b columns, and largest entry at most c.
m is symmetric if m; ; = m;;. The complement 7° of 7 is the set of unit cubes that fit inside
the a x b x ¢ box, but do not belong to w. A plane partition is self-complementary if it is
equal to its complement.

Definition 3.19. A totally symmetric self-complementary plane partition (TSSCPP) is a
plane partition that is both symmetric and cyclically symmetric, as well as self-complementary.

FIGURE 6. Two TSSCPPsina6x6 x6
box

Theorem 3.20. (Andrews, 1994): The number of TSSCPPs in a 2n x 2n x 2n box equal
to the number of ASMs of order n

10



4. MACMAHON’S Box FORMULA

4.1. Plane partitions as lozenge tilings. A dimer covering, or a perfect matching of a
graph G is a collection of edges that covers all the vertices exactly once, that is, each vertex
is the endpoint of a unique edge.

Kasteleyn showed how to count the number of dimer coverings of an m x n square grid, and
later on any planar graph. The statement is particularly simple when G is a subgraph of
the honeycomb graph H of the regular tiling of the plane by hexagons, bounded by a simple
polygon. Then the number of coverings Zg is the square root of the determinant of the
adjacency matrix of G.

This is relevant because another way of viewing plane partitions in an axbx ¢ box, is as lozenge
tilings of an a@ x b X ¢ x a X b x ¢ hexagonal region of a triangular grid. Therefore, counting
the number of plane partitions boils down to counting the number of perfect matchings of
the dual graph.

Theorem 4.1. (Kasteleyn’s theorem): Let G be a planar graph. Then,

(i) there exists an orientation of G such that every face in G has an odd number of
clockwise oriented edges

(ii) if A(G) is the adjacency matriz for such an orientation, the number of perfect match-
ings in G is v/det(A(G))

However, proving MacMahon’s box theorem this way turns out to be difficult.

4.2. Plane partitions as lattice paths. A plane partition may be represented as a family
of plane partitions as follows: let P be a plane partition inside an a x b x ¢ box, with at most
a rows, at most b columns, and largest entry at most c. Each row of P is itself a partition
contained within a b x ¢ box, and is uniquely represented as an up-right path from (b,0) to
(0, c) as demonstrated.

Example 4.2.

DN N W
NN W

(00

T

FIGURE 7. The partition (4,3,3,2) as a lattice path

(b:9)

A family of lattice paths can thus be created, with each lattice path representing each P;:

(a) in Z2, the lattice path P; starts at (1 —i,7 — 1) and ends at (¢ + 1 —i,b+i — 1)
(b) each entry P;; indicates a vertical edge at i — 1 + P; j on the x axis.

11



(1,1)
(2.2)
(3’ 3)

‘7 (4,4)
(739 3)
(_2= 2)

(_1= 1)
(0,0)

FIGURE 8. The above plane partition as family of NILPs

Notice that since P;; > Pj11j, we get a family of non-intersecting lattice paths (NILPs).
Hence, in order to count the number of partitions in a box, we must count certain families
of NILPs. The Lindstrom—Gessel-Viennot lemma is a way to do that.

Definition 4.3. In a permutation o if (i) > o(j) for i < j, then (o(i),o(7)) is an inversion
pair of o

Definition 4.4. The sign of a permutation o can be expressed as
sgn(o) = (~1)"(7)
where inv(o) is the inversion number, i.e, the number of inversion pairs in o.

Theorem 4.5. The inversion number inv(o) of a permutation o € S, has the same parity
as the number of transpositions t(o) in the decomposition of o, and hence

sgn(o) = (-1

Proof. In the case of the identity permutation, the proof is trivial. Since every permutation
can be obtained be sequentially left-multiplying the identity with transpositions, it is suffi-
cient to show that multiplying by one transposition changes the number of inversion pairs by
an odd number, hence switching the parity of inv(o).

Suppose we have a permutation o. Left-multiply by (c;0;) where i < j to obtain (o0;)-0 =
o’. This clearly makes/removes the (i,j) inversion pair, changing inv(c) by £1. Next, we

show that the remaining change in inv(o) is by an even amount.

For any a ¢ [4,j], it is not hard to see that the inversion status of o, and o; (or o;) are
the same under both ¢ and ¢’. On the other hand, if a € (7, ), then the inversion status
of o; and o, flips when we go o to ¢’ (and symmetrically between o; and 0,). So, suppose
there are N elements strictly between i and j, and K of them form inversion pairs with ¢ (or
o;) under o, and hence N — K did not. Under ¢’, we have then lost K inversion pairs, and
gained N — K, for a net change of N — 2K in inv(o). Symmetrically, if L elements in (i, j)
formed inversion pairs with j under o, we will have a net change of N — 2L in inv(o).

Therefore, total change in inv(o) amounts to 1 + (N — 2K) + (N — 2L), which is an odd
integer. (]

4.3. Lindstréom—Gessel-Viennot lemma. Let G = (V,E) be a finite directed acyclic
graph. Let G be edge-weighted, such that the weight of a directed path p = (vq,...,vg) is
the product of the weights of the contained edges:

k=1
w(p) = | [w(vi, vig1)
i=1

12



Let P = (p1,...,pn) be the family of paths in G with distinct starting points in {s1,...,s,}
and distinct ending points in {ey, ..., e,}. Define the weight of the family of paths as

w(P) = [ [wp)
=1

If the the i*" path starts at s; and ends at es; Vi where o € S),, then the sign of the family
P is sgn(P) = sgn(o). P is said to be non-intersecting if no pair of path in P has a vertex
in common.

Theorem 4.6. (Karlin-McGregor, 1959; Lindstrom, 1973; Gessel-Viennot, 1985):
Let G be an edge-weighted, finite, directed, acyclic graph with two families of disjoint ver-
tices S = {s1,...,8n}, and E = {e1,...,en}. Let p(i,j) be the weighted sum from s; to e;.
Then the signed weighted enumeration of non-intersecting lattice paths (NILPs) P starting

at s1,...,8, and ending at e1, ..., e, is given by
>, sgn(P)w(P) = det(p(i, j))1<ij<n
P an NILP

Proof. Using the Leibniz notation of the determinant, we get

det(P;;) = ngn(a)ﬂp(i,ai)
i=1

o€S,

Further expansion of the above expression results in the signed sum of weights of every pos-
sible family of paths from S to E. To isolate those terms in the summation that correspond
to NILPs, we need to find a weight-preserving, sign-reversing involution on the set of
all families, which will pairwise cancel the contribution of families with intersecting paths.

In any family P = (p1,...,pn), let a be the smallest integer such that the path p, = (s, =
ap,az,...,a, = €,,) from s, to e,, has an intersection. Let b be the smallest integer such
that pp = (sp = b1,b2,...,bm = €5,) and p, intersect, and let k = a, = b, be the last point
of intersection. Interchange the vertices of p, and pp after u, to obtain

/
P, = (s¢a=a1,a2,....k ...;0;m—1,bp = e5,)
/
py, = (sp=0b1,bay....k,...;(an_1,0n = €5,)
Se. e"n Se. e"n
Sy Cey Sy Cey

FI1GURE 9. The LGV involution

We thus obtain another family P’ = (p1,...,DPa—1:D), Pat1s---»Pb—1,Pp, Pb—1,- - - ,Pn), Where
a path starting at s; ends at e,s, where o'= (040p) - 0 to account for the interchange of the
endpoints of paths starting at s, and s,. Performing this process on P’, we get back P,
therefore this process is an involution. Since the edges are preserved in the involution, so are
the weights of the paths and thus w(P’) = w(P). Also, since ¢’ can be obtained from o by a
single transposition, (—1)1?) = —(=1)%")and hence sgn(P’) = —sgn(P). The involution is
therefore weight-preserving and sign-reversing as desired, and contributions of families with
intersecting paths cancel pairwise, proving the result. 0
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Corollary 4.7. (Simplest form of the LGV lemma) Suppose G is such that the only
NILPs are from s; to e;Vi. Then, det(P(ivj)) gives the weighted sum over all NILPs, and is
manifestly positive.

In order to apply the LGV lemma to count the families of NILPs that represent partitions in
the box, we first need to find a weight-preserving sign-reversing involution on the families of
NILPs. The LGV lemma cannot be used directly since as per MacMahon’s formula since the
weight of each lattice path is the area of the Young diagram of the partition it represents.

Definition 4.8. The minimal path from s; to e; is the path that consists of all up steps
initially, followed by all right steps.

Let ar(p(i, 7)) be the area enclosed by the path p(i,7) and the minimal path from i to j.

Lemma 4.9. (Krattenhaler’s lemma): Given indeterminates x1,...,Tpn, a2,..., Gy, and

bo, ..., by, we have

det((xi +an)"‘(xi +Clj+1)($i +bj)(l‘z +bg))1gi7j<n = 1_[ (l‘Z —xj) H (bl —aj)
1<i<j<n 2<i<j<n

Theorem 4.10. (MacMahon’s ”Box Formula”): The generating function of the number
of plane partitions contained in an a X b x ¢ box is given by

itjtk—1

> =TT s

TCaxbxc 1=1j5=1k=1

Proof. Let p(s1,e1) and p(sg, e2) be two intersecting lattice paths in a family of lattice paths.
Performing the LGV involution, we observe that the weights of the paths are not preserved.

< ! (4

FIGURE 10. LGV involution on lattice paths

If the x—coordinates of s; and s are 71 and io respectively, and the y—coordinates of e; and
eo are j1 and jo respectively, then the change in weight is

Ar(p(s1,e2)) - Ar(p(s2, e1)) — Ar(p(s1, e1)) - Ar(p(s1,e2)) = (i1 —i2)(j1 — J2)

To make the difference in weights 0, we modify the weight of each path by introducing a
quantity whose contribution to the difference is — (i1 — i2)(j1 — Jj2)-

—(in—i2) (1 — jo) = —i1(jr —j2) +i2(j1 — j2) + (if — %) + (i3 — 3)
= d1(in — J1) +i2(ia — jo) — i1(i1 — jo2) — @2(i2 — j1)
Thus, if w(p(i, §)) = g9+ AP then

w(p(s1,e1)) - w(p(se, e2)) = w(p(si,e2)) - w(p(s2,e1))

14



The involution from the LGV lemma is now weight-preserving and sign reversing. The
quantity (i — j) = 0 for NILPs since ¢ = j, and the path from s; to e; has weight ¢™ as

wanted. Thus, by the LGV lemma,

7| — i(i—j) b+c
2 q det(q [b—l—j—i])
4/ 1<i,j<a

TCaxbxc

Evaluating the determinant: Let M be the nxn matrix given by M = (qi(ij ) [

The (i, )" term of the matrix is:

i(i—7) [ b+c ] I ) [b + c]q!
b+j—if, [b+j—ilq![c+i—jlg
b+c
[T1-¢"
- qi(i—j) __ k=1 _
b+j—1 cti—j
[[ 1-¢" [I 1—qm
=1 m=1
b+c
kHI 1- qk b+a—1
= ¢ J)b+a—i c+i1 x H 1—q

1_[ 1— ql H 1— qm n=b+j—i+1
=1 m=1

We factor out the j—independent term from each row of the determinant to get:

(4.1)
b+c

b+c
b+j—i

c+i—1

)

1—4

p=c+i—j+1

a 1_[ 1- qk a—j j—1
_ k=1 . i(i—j) _ btj—itk L cti—j+l
det(M) - H 7 c+i—1 det (q H 1 q H 1 q )
I=1

. b+a—1i
i=1 1_[ 1_ql l—[ 1_qm k=1
=1

m=1

Consider the (i,5)" term of this simplified determinant. Factor out ¢~* from each of the
(a — j) terms in the first product, and —¢/~¢~! from each of the (j — 1) terms in the second

product, to get:

a—j

. j—1
(4.2) det <(_1)(j—1)qi(ij)z‘(aj)+c(j1)(;) H g — gbrIiTitk H ¢ — qj—c—l>
=1

k=1

)

a

Il
—

7

, a—j J-1
_ (_1>(i—l)qu,i(erc(ifl)f(;) - det (H qi o qb+j—i+k Hqi o qj—c—l)
k=1 =1

We can now use Krattenhaler’s lemma (lemma 4.9) to further simplify this determinant to

get:

a—j Jj—1
(4.3) det (H q — qb+37’+k H i qJCl> - H (ql _ q]> H (_qchrzfl + qb+])
k=1 =1

1<i<j<a 2<i<j<a
a a
_ i(a—1 j—1 —c+i—1)(a+1—1
N V] | U
=1 I<i<j<a =2 2<i<j<a

15
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Combining 4.1, 4.2 and 4.3, we get

a

(4.4) det(M) = Hqi(cfa)chr(i;l)+i(a7i)+(fc+i71)(a+lfi)

i=2
b+c 5
% — k=1 — qu(afz) H (1 _ quz) 1_[ (1 _ qb+c+j71)
i=1 [T 1-¢ ] 1-¢gmi=! 1<i<j<a 2<i<j<a
=1 m=1
The pre-factor of ¢ is:
a .
'22[2'(0 —a)—c+ (TN +ila—i) + (—c+i—1)(a+1—1i)]
1=
a -9 .
3 5
= Z[Qic—Qc—L—k—Z—ac—l—ai—a—l]
i=2 2 2
5, ,a(la+1 3ra(a+1)(2a+1
= —(ac—|—2c~|—a+1)(a—1)—|—(20+a+2)((2 )—1)—2[( L( )—1]
=0
The remaining factors can be written as:
b+c a . . a . . a . .
o [ LLA=a) T TT A= ) [T =g )
. = 1= =1+ J=t
B H b+a—i ct+i—1 x H 1 — gbteti
= [T A=d¢) IT (1—qm) =
=1 m=1
b+c P L a—i a—itl b )
. kﬂl(l—q )HIQ’(“), 1(l—fﬂ) 1_[1 (1—gteti) ),
_ = i= j= j=
- H bta—i i1 % H 1= ooty
= [I 1-d) [T A=qm) i=1
=1 m=1
a+b+c—i+1 5
a i (1 —q ) a 1
_ =1
N H a—l+b ct+i—1 x 1_[ 1— qb+c+j
ST e T asem )
l=a—i+1 m=1

Replacing i by a — ¢ + 1 in the k& and [ products,
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M ARICEYY
- H P
i=1 ll:[ (1—¢)

a b i+jt+c—1

- TIT1 1—q
o — giti—1
i=1j=1 1=q™
a ﬁ ﬁ 1 — gitith-1
- _gititk—2
i=1j=1k=1 1=q™
Hence proven U

5. SYMMETRY CLASSES OF PLANE PARTITIONS

A plane partition 7 is a symmetric plane partition (SPP) if m; j = m;; ¥i,j € N.

For convenience, define the set
B(a,b,c) = {(i,, k)1 <i<a,1<j<b 1<k<c}

so that a plane partition 7 is a subset of B such that if (4,7, k) € m, then (i — 1,75, k), (i,7 —
1,k),(i,j,k — 1) € 7. A symmetric plane partition in B(a,a,c) is a partition 7 such that if
(1,7, k) € w then (3,1, k) € .

Conjecture 5.1. (MacMahon’s congecture): The generating function for symmetric
plane partitions that are subsets of B(a,a,c) is given by

| | 1— q1+22+k 2 2+2(i+j+k—2)
Y
2 [T T )| 1l i e
7<B(a,a,c) i1=1k=1 1<i<j<a k=1

So(m)=n

Tan Macdonald realised that this conjecture could be expressed differently.

Let S be the group of permutations (of order 2) acting on the first two coordinates of an
SPP 7. Let /S be the set of orbits of elements of B under the action of So. There are two
types of orbits:

(i) singletons of the form {(7,7,k)}
(ii) doubletons of the form {(i, 7, k), (j, i, k)}, where i # j

For an orbit 7, let |n| denote the size of the orbit. Define the height of an element (i, j, k) as

ht(i,j. k) =i+j+k—2

17



and let the height of an orbit, ht(n), be the height of any of its elements. Then, MacMahon’s
conjecture for SPPs can be rewritten as:

X e ]

w<B(a,a,c) neB(a,a,c)/S2
So(m)=m

1_qwu+mm»
1 — glnlht(n)

This way of rewriting the conjecture further enabled Macdonald to conjecture formulae

for cyclically symmetric plane partitions (CSPPs) and totally symmetric plane partitions
(TSPPs).

Conjecture 5.2. (Macdonald’s conjecture): The generating function for cyclically sym-
metric plane partitions that are subsets of B(a,a,a) is given by

S o ] 1 — glnl(Lhe(m)

1 — glnlht(n)
w<B(a,a,a) neB(a,a,a)/Cs
w a CSPP

where Cs is the cyclic group of order 3, acting on (i, 7, k).

Conjecture 5.3. (Macdonald’s TSPP conjecture): The generating function for totally
symmetric plane partitions that are subsets of B(a,a,a) is given by

S o ] 1 — gl (1+ht(m)

1 — glnlht(n)
w<B(a,a,a) neB(a,a,a)/Ss
w a TSPP

where Ss is the group of all permutations acting on (i, j, k).

Similarly, replacing Ss with the trivial group, S, yields the number of plane partitions
contained in B(a, b, c).

5.1. Symmetric functions. Let R be a commutative ring with identity and let x be an
indeterminate.

Definition 5.4. The ring of formal power series in = denoted R[[x]] consists of formal sums
of the form
f(z) = Z anx™ ;where a, eR YV n

n=0

Addition and multiplication on R[[z]] is defined as on the ring of polynomials R[z], with
identity elements being 0 and 1 respectively. We can extend this definition to the ring of
formal power series in countably infinite indeterminates, denoted R|[[z1,z2,zs3,...]], where
each summand is a monomial of finite degree.

Definition 5.5. Let n € N. A weak composition of n is an infinite sequence o = (a1, 2, a3. . .)
such that

0

Definition 5.6. A homogeneous symmetric function of degree n over R is a formal power
series

f(z) = anxa, where

(i) « ranges over all weak compositions of n
(ii) ca € R

(i) x* = 27" x5%x5?

18



(iv) f(z1,22,...) = f(Zoy, Toy, . . .) for every permutation o of N.

Let A% = A" be the set of homogeneous symmetric functions of degree n.

o If f,ge A" and a,be R, then af + bge A". If R = Q, A’ is a vector space.

o If fe A™ ge A", then A"

o If we write Ag = A% &) A}% @ A%{ ..., then every symmetric function f can be written
as f = fO+ fl+ >+ ... where f' € A%;. Then, Ag becomes an R-algebra.

5.1.1. Schur functions. Let A = n. A Semi-standard Young Tableau (SSYT) of shape A is a
filling of the Young diagram of A by positive integers that increase weakly along rows and
increase strictly along columns. If T is an SSYT of shape A\, we write sh(T) = A. The type
of T denoted by o = (a1, a9,...) = type(T) is a weak composition where o; = «;(t) is the
number of parts of T equal to i. For an SSYT of type a we write

T T
xT Zx?l( )ng( )

Definition 5.7. Given a partition A - n, define the Schur function sy indexed by A, in the
variables x1,xo,... as
S\ = Z XT
T

sh(T)=X\

Theorem 5.8. Schur functions are symmetric, i.e sy € A

Proof. Any transposition (ij),i < j can be written as a product of adjacent transpositions
in the form (i i +1)(i+1i+2)...(j—17)...(¢+1i+4+2)(i i+ 1). Since sy(x) is invariant
under any permutation N interchanging finitely many positions, it suffices to prove that sy
is invariant under the interchange of x; and ;1.
Let A+ n and a = (a1, a9, ...) be a weak compositions of n. Interchange a;, ;1 to get
a’ = (041, e O 1,004 1,0, By 2, . . )
and define

Trha = {SSYT T|sh(T) = A type(T) = o}

|Th.al gives the coefficient of xT, and we need to show that [Ty o] = |[Ta.o|-

Let T € Ty . Consider those parts of T' that are equal to either ¢ or 7 + 1. We find that in
any column, there are three possibilities:

(i) The column contains neither i nor i + 1
(ii) It contains both 7 and ¢ + 1
(iii) It contains only one of ¢ and 7 + 1

Since (i) is inconsequential and cardinality is preserved in (ii), we focus our our attention on
(iii). The most general configuration of (iii) is :
t...% ¢t e+l 4+1 410000 +1
AR

N
To r s S0

Here, there are ro (i + 1)s under the first 7o is in the following row, and sg is under the last
50 (i 4+ 1)s in the previous row. All parts below the next r is will therefore be strictly greater
than ¢ + 1, and all parts directly above the s (i + 1)s will be strictly less than i. There thus
exists a tableau ¢(T'), with s is and r (i + 1)s in each such block. ¢ : Ty o — T, is clearly
an involution, and hence proven that |7y o| = | T« O
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Definition 5.9. Let A - n, and « be a weak composition of n. Then, the Kostka number
K)o is the number of SSYTs of shape A and weight (or type) o

K)\,a = ’7-)\,04‘

Then, by theorem 5.8

S\ = Z KA,#mM
pn

where p is the partition made by rearranging «. For p = (1), Ky 1y is given by the
hook-length formula (theorem 3.6).

Proposition 5.10. {s)|\ - n} is a basis for A"

Proposition 5.11. {(s),5,) = 05, i.e, {sx} forms an orthonormal basis for A

Alternate definition of Schur functions (Jacobi’s bialternant formula):

Fix n variables x1,...,x,. Let A - n be a partition with Ay > Ao > ...\, = 0. Define
d=(n-1,n-2,...,1,0). Define the skew-symmetric function ay;s(z1,...,2,) as

n
Aj+n—j Ay 11
Aris = det(:l:ij"'n ])1<i,j<n - Z sgn(m) | |$k o =Tk
k=1

mEdn
Since ay g is alternating, it is divisible by the Vandermonde determinant = det(x?_j ) = as,
and their ratio is a symmetric polynomial in x1, ..., xy.
Definition 5.12. Schur polynomials in n variables z1,...,z, indexed by a partition A -~ n,
are defined as follows:
ax+s
Sx(T1, ..., xn) =
as

Theorem 5.13. (Cauchy Identity): Let x = (v1,2z2,...) and'y = (y1,92,...) be two
families of variables. Then for all partitions A,

1
Z sx(x)sa(y) = —
X 11;[1 1= aiy;

Theorem 5.14. (Jacobi-Trudi Identity): Let A = (\1,...,\;) be a partition of n, where
Al = ... = M = 0. Schur polynomials can be expressed in terms of complete homogeneous
polynomials as follows:

sx(@1,. .. xn) = det(h,\j,jﬂ-(xl, e Tn) 1< i<k

Proof. Let T;, » be an SSYT of shape A with entries in [n]. Each T € T,  can be expressed as a
family of non-intersecting lattice paths as follows: the i*" lattice path goes from s; = (1, k—1)
to e; = (n,ky; — j), taking up and right steps. Assign each horizontal edge the weight 1, and
the vertical edge in column j, the weight 7. For example, the SSYT

1112 4
2 3 14
3 4 5
4 5

has weight z3z3237322. Since each SSYT has strictly increasing entries along the columns,

the corresponding family of lattice paths is non-intersecting. There is thus a bijection between
T, » and families of NILPs with specific starting and ending points.
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Now, since a path from s; to e; has A\j — j + ¢ up steps, the degree of its weight is A\; — j + ¢.
Moreover, the sum of the weights of all paths from s; — e; is a symmetric function of
T1,...,Tn. Since every monomial has coefficient 1 and degree at most n,

wt(si — ej) S5 hAj—j+i($1, e ,l‘n)
Using the LGV lemma, we now have

S>\(l’1, ey l‘n) = det(wt(si - €j))1<i,j<k = det(hf)\j_j_l,_i(l'l, e 7xn))1<i,j<k

We can also use Schur functions to prove Macmahon’s Box formula.

5.2. Alternate proof of the Box formula. We can write any semi-standard Young tableau
in terms of variables by replacing the entry with value k& by . For example, the previously
defined SSYT may be written as

1 1 T1 T2 X4
T2 T3 T4

T3 T4 Ts

Ty I

We can replace the x;s with powers of ¢ to represent plane partitions in a box. For example,
setting 1 = ¢® would mean that each z; represents a stack of 6 cubes. However, since
SSYTs are strictly decreasing along columns, we can only obtain CoSPPs in this manner,
with weight equal to the sum of the entries = xT = weight of the SSYT.

Suppose A = (b%), and T is an SSYT of shape A. To get a plane partition, subtract a + 1 —1
from each entry in the " row. Setting 1 = ¢®*°, ..., Tate—1 = ¢*, Tase = ¢, and subtracting
a + 1 — i from each entry means multiplying the weight of the CoSPP by ¢ 0~2b——ab —
g be(at1)/2 ¢4 the weight of the corresponding plane partition in an a X b x ¢ box. Since any
plane partition inside B(a, b, c) can be obtained in this manner, we get

Z q|7r| _ qua(aJrl)/QS)\(anrc’ anrcfl

TCaxbxc

7"'7Q)

which can be evaluated using Jacobi’s bialternant formula (5.12).

5.3. Proof of MacMahon’s SPP Conjecture. MacMahon conjectured that the generat-
ing function for symmetric plane partitions in an a x a x ¢ box, i.e, SPPs that are subsets of
B(a,a,c), is as follows:
1— q1+21+k 2 1— q2+2(z+]+k 2)
o= (T s ) (T T2
w<B(a,a,c) i=1k=1 1<i<j<a k=1
So(m)=m

which can be written as
qln\(1+ht(?7))

1—gm =
H 1 — glnlht(n)

The proof of MacMahon’s conjecture can be divided into three steps: the first step is to
express the generating function for SPPs as Schur functions. Then, we use Macdonald’s
formula to sum all Schur functions whose partitions fir inside an a x ¢ rectangle. Lastly, we
use the Weyl denominator formula to simplify the resulting determinants as products.
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Lemma 5.15.

wan SPP AS(c)

mTCaxaxc
Proof. There is a bijection between SPPs of n in an a x a x ¢ box and CoSPPs of n with odd
heights in an a x ¢ x (2a — 1) box. This can be shown by first slicing an SPP parallel to the
xy plane into ”levels”, i.e subsets of cubes of the same heights. Since each level is symmetric
about the x = y plane, we can further decompose them into the hooks of the cubes lying in
the z = y plane. Because of the symmetry in each level, hook lengths are odd and strictly
decreasing within any particular level. We can reassemble the hooks into columns such that
the " stack in the j** column is equal to the i** hook at the j** level, and i < a, j < ¢ and
each hook contains at most 2a — 1 cubes. We end up with a CoSPP in an a x ¢ x (2a — 1)
box, where each non-zero entry is odd. This process is reversible and weight-preserving, i.e,
the number of cubes is preserved.

This set of CoSPPs is in bijection with semi-standard Young tableaux inside (¢*). Adding 1
to each entry in a CoSPP and dividing by 2 results in an an SSYT inside an a X ¢ x a box.
Then, by the same kind of bijection described in the alternate proof of the Box Theorem, the
generating function of CoSPPs is

2 SA(q2a717 o 7q37 Q)
ACS(c?)
]

Recall that we had defined sy(x1,...,z,) = ag” This is a special case of the Weyl character

formula. This formula for Schur functions is the character of the group GL,(C) for the
representation indexed by A, and thus Schur functions are also called GL,, characters.

Similarly, there are characters formulae for other classical matrix groups.

Definition 5.16. The orthogonal group is
O(n) ={Ae M,|AA* =T}
where * is used to represent the summation conjugate.

Definition 5.17. The odd orthogonal characters denoted S O"dd indexed by either a partition
of a half-partition (i.e a partition with entries in N+ 1/2) A = (A1,...,\,) is given by

( Aj+n—j+1/2 —Aj—n+j—1/2
ﬂfi :

det )
1<i,j<n

odd _
SO( T1yeeeyTn) = det( n—j+1/2 _  —ntj-1/2

! >1<i,j<n

Theorem 5.18. (Weyl denominator identity): the identity states that

ﬁ 1/2 _ _1/2 1—[ (zi — zj)(wiz; — 1)

inxj

+1/2 —n+4j—1/2
det(n]/ :rinj/)
1<i,j<n

—_

1<i,j<n

where T = %

Remark 5.19. As in the GL,, case, this is symmetric in z; <> ;, and in addition, there is
the x; < @;, Vi. Unlike the GL,, case, this is a Laurent polynomial.

Lemma 5.20.
2 sx(@1,. .., xq) = SOE’(d%d)a)(a;l, ) (@, 1)

ACS(c?)
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By lemma 5.15 and lemma 5.20, we have

dod = SO?g§a(z1, @) (@1 m)

man SPP
TEaXaxc

and we need to evaluate the character for x; = ¢?*~2+1,

Denominator: The denominator of the character is

det <q2a72i+3/2+a7j —2a721+3/2+a7])

—q
2a+1—i _ q2a+1—j) (q4a+2—i—j _ 1)

_ H <q(2a+1—2i)/2 _ q—(2a+1—2i)/2> H (g P

i=1 1<i<j<a

Replace ¢ and a +1 — 14, and j and a + 1 — j to get

a 2i—1 q2j71) (q2i+2j72 o 1)

= H <q(i_1/2) - q—(i—1/2)> H (q 2i+2j—1
i1 1<j<i<a q
1—[‘ (q2i71 _ q2j71) (q2i+2j72 _ 1)

1 2i—1 1<j<i<a
1/2+3/2+..,+(2a71)/21_[ q o ) g2+ +a)+2(4+ .+ (at+1))+..+2(20-2)

a
_ a2/2+a2 = q 22 1 H (q2i—1 o q2j—1) (q2z+2j—2 o 1)
i=

1<j<z<a

Numerator: The numerator is of the form
2 12 i
Numerator = det ( ¢/2+a—j=1/ ;2 J+1/2>

where x; = g2~ 2+1,

Expand the determinant using Leibniz expansion. Since there are two terms in each entry of
the matrix, there are 2% terms corresponding to each permutation. We can further simplify
the expansion by taking a subset T of [a] and choosing values of j from T for the second

term as follows:
Z Z sgn(0)+|T| H xgé?-&-a—j-‘:—l/? H x;jc/?—a-‘rj—lﬂ

0€Sa TC|a 7¢T jeT
a
_ Z Z sgn(a)+|T|H €j(c/2+a—j+1/2)
e wUJ
0€Se TC|a 7j=1

where
-1 jeT
€ = ]
+1 j¢T

Interchanging o and ¢!, and €j and €5-1(;),

2 Z sgn o)+|T| H €;j(c/2+a—0o;+1/2)

0€Sq TC|a]
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Substitute z; with g2et1=2,

a

Z Z sgn o)+|T| quj ¢/24+a—0oj+1/2)(2a+1-2j5)

0€Sa TCa Jj=1
a

— Z Z sgno+\T|1_[ c+2a—2, +1/2)a+1/2 j
0€Sa T<[a Jj=1

det ((qc+2a—z+1)a+1/2—j o (q—c+2a—i+l)a+1/2—j)

Using the Weyl denominator identity 5.18:

_ ﬁ (qc/2+a—i+1/2 B q—c/2+a—i+1/2> H
=1

1<i<j<a

2c+4a—2i—27+2
q q JTe—1

q2c+4a—2i—2j+2

(qc+2a—2i+1 . c+2a—2j+1)

Replace ¢ with a + 1 — 14, and j witha +1—j
a (q2i—1 _ q2j—1) QPeraT2-2

H <qc/2+i—1/2 _ q—c/2+i—1/2) 1—[

i=1 1<j<i<a
c+2i-1 _q 2i—1 _ 25—1 2¢+214+25-2 _ 1
11;11 (q ) iSjEIiSa (q 4 ) (q )

qa(c—l)/2+a(a+1)/2 * qc<g)+a2(a—1)/2

qc+4a—2i—2j+2

Combining everything, we get
a (qc+2i71 _ 1)

E ¢t -1 1<J1‘:[z<a
a ) —
B (qc+22 1 _ 1)
1‘11 ¢t -1 1<Q<a
1 _q1+2z+k 2 2+2(z+j+k 2)
= (HH 1_q2z +k—2 H H 1—q’+]+k 2)

i=1k=1 I<i<j<a k+1

o 5 2
(q26+2l+2j 2 _ 1) a2/ . q° /2 . q° (a—1)

— *
(q21+2]72 _ 1) q qac/2+a2/2 . qc(;)+a2(a71)

(q2c+2i+2j72 _ 1)
(2i+2-2 — 1)

Which is Macmahon’s formula.

6. AzTEC DIAMONDS

For an ASM A of order n, let i(A) be the number of (—1) entries in A. Then, a 2-enumeration
of ASMs is 22“(‘4) = 2n(n+1)/2 Tn 1992, Elkies, Kuperberg, Larsen and Propp introduced
a new class of objects called Aztec diamonds, and showed that an Aztec diamond of order
n has 2""*+1/2 domino tilings. This result can be proven in two ways: by establishing
a correspondence between a domino tiling of an Aztec diamond and a compatible pair of
ASMs, and by weighted enumeration of monotone triangles to count the domino tilings of an
Aztec diamond.

Definition 6.1. An Aztec diamond of order n, A, is the union of lattice squares [a,a + 1] X
[b,b+ 1] (a,b € Z) lying inside the region {(z,y) € R? : || + |y| < n + 1}

A tiling of a region R is a set of non-overlapping tiles whose union is R, where a tile may be
any closed connected region in R?. A domino tiling of A,, is equivalent to a perfect matching
of its dual graph. For any tiling T of A,,, and for an integer k& < n, the line y = k divides 4,
into two regions with an even number of lattice squares. Then, an even number of vertical
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dominoes must cross y = k in T, and hence the number of vertical dominoes in T" must be

even. Let v(T) = £ x (number of vertical dominoes in T).

Let an ”elementary move” be the action of rotating the 2 x 2 block formed by two adjacent
horizontal (/vertical ) dominoes in a region by 90°. Then, define the rank r(T") of T, to be
the minimum number of elementary moves needed to obtain 7' from the all horizontal tiling,
assuming this is possible.

Let
D(n; z,q) Zx (T) 4 (T)

where T' is a domino tiling of A,,. Then,

Theorem 6.2. Elkies, Kuperberg, Larsen, Propp:

n—1
AD(n:x,q) = H(l + pgPhtyn=k
k=0
Corollary 6.3.
(a) set x =1, then
n—1
AD(n;q) = H(l + q2k+1)n—k
k=0
(b) set q =1, then
H (I+x)" =1+ :L‘)n<n2+1)
(c) set x = q =1, then
n(n+1)
AD(n) =2z
2n(n2+1)

Notice that for an ASM A of order n, 3] 2#(4) =
A

6.1. Height Functions. In order to determine the rank r(7') of a tiling 7', we assign unique
integers to each corner of each lattice square in A,,. Write G as the graph of A, with

V o= {(a,b)eZ*: |a] +|b| <n+1}
E = {((u1,u2),(v1,v2)) € V?:uy = vy + 1 or ug = vy + 1}

Colour the lattice squares in G alternately black and white, such that each square shares
its sides with oppositely coloured squares, and the line x + y = n + 1 passes through only
white squares. Then, orient the edges of G such that arrows circulate clockwise around black
squares, and anticlockwise around white squares. Define v = (a, b) to be a boundary vertez if
|a] + |b] = n or n+ 1, and let the boundary cycle be the closed cycle containing all boundary
vertices including (0, £(n + 1)) and (+(n + 1),0). A vertex v = (a,b) is even if it is the top
left corner of a white square, i.e, a + b+ n + 1 is an even integer.

Note that there are four possible local domino configurations in a tiling of G. In each case,
as we traverse the boundary of the domino, we encounter three arrows in the direction of
traversal, and three arrows in the direction opposite to it.

To understand height functions, we tile the complement of the Aztec diamond in R with
horizontal dominoes, and call this tiling 7. Every boundary vertex of G thus lies on the
boundary of at least one domino in 7.

Definition 6.4. A height function Hr is a unique assignment of integers to the vertices of
G given a tiling T such that
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FiGure 11. Colouring and orientation of G

(a) Hr(—m —1,0) =0
(b) if wv is the boundary of a domino in T with u — v, then Hp(v) = Hp(u) + 1

Height functions are characterised by the following two properties:

(a) Along the boundary cycles, Hp takes values 0, 1,...,2n+1,2n+2,2n+1,...,1,0,1,...,2n+
L,2n+2,2n+1,...,1,0 starting from the vertex at (—n — 1,0)
(b) If w — v, then Hp(v) is either H(u) + 1 or H(u) — 3.

(a) is clear from the construction of 7. To prove (b), observe that if uv is not a boundary of
a tile in Tt it must bisect a domino of T, in which case Hr(v) = Hp(u) — 3, which can be
verified for each of the four possible domino configurations. If uv does lie on the boundary of
T, then by the definition of Hy, Hy(v) = Hp(u) + 1. Conversely, if H is a height function
that satisfies (a) and (b), then we can obtain the tiling 7' by placing a domino across every
edge such that |H(u) — H(v)| = 3, and we conclude that H = Hp. Thus, we have a bijection
between such height functions and domino tilings.

6.2. Corner Sum and Height Function Matrices.

Definition 6.5. A corner sum matriz of order n is an (n + 1) x (n + 1) matrix with entries
in N such that

(a) the first row and column consist of Os

(b) the last row and column consist of entries 0,...,n in that order
(c) each entry is either equal to or one more than the entry to its left, and the entry
above it

Proposition 6.6. Corner sum matrices of order n are in bijection with ASMs of order n

Proof. Let C,, be a corner sum matrix of order n. Then,

Cij= D, auj

0<i'<i
0<y'<y

for some ASM A,, = [a;;] of order n. The inverse map A, — C,, is as follows:
@y jt = Cij = Cim1j = Cij—1 + Cin1-1

O

Definition 6.7. A height function matriz of order n is an (n + 1) x (n + 1) matrix with
entries in N such that
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(a) the first row and column consist of entries 0,...,n in that order
(b) the last row and column consist of entries n,...,0 in that order
(c) every entry differs from the entry above and, and the entry to its left, by +1

Proposition 6.8. Height function matrices of order n are in bijection with ASMs of order
n

Proof. Let ¢; ; be a corner sum matrix of order n. We can obtain the height function matrix
[hij] by
h@j =1+7— 261'7]‘
Clearly, the inverse map [h; ;] — [c; ;] exists. Thus, height function matrices of order n are
in bjiection with corner sum matrices of the same order, which are further in bijection with
ASMs of order n (proposition 6.6). The map A,, — H,, is defined by the operation
agjr = hi—1,j +hij—1 = hij = hi—1,j-1
O

6.3. Aztec diamonds and ASMs. We will now show that domino tilings of the Aztec
diamond region of order n (AD),,) are in bijection with pairs of ASMs (A, B), where A and
B are of orders n and n + 1 respectively, and satisfy a certain compatibility condition.

(T — (A,B))

Given a domino tiling T" of AD,, with height function Hp, we construct (A, B) as follows:

e Define matrices A’ and B’ to record the values of Hp for odd and even vertices

respectively:
A =lai;] = [Hr(-n+i+1,—i+7)]
B’z[b’ivj] = [Hp(-n—14+1i+j,—i+j)] 0<i,7<n

Since the boundary vertices have fixed heights, the first and last rows and columns
of A and B’ are forced. Also note that consecutive entries in A’ and B’ must differ
by exactly 2, as per the definition of Hp.

e From A’ and B’, construct matrices A* and B* as follows:

2

B*=[b*] = [b;J]
1,] 2

A* and B* are height function matrices of orders n and n + 1 respectively, and are
thus in bijection with pairs of ASMs of the same orders.
e We can obtain the desired pair of ASMs, (A, B), from (A*, B*) as follows (proposition

A* =

|
—
e
Sw
.
—
|

6.2):
1 * * * *
A = ai ] [5(%;‘—1 +aiyj—ai;—aiq ;)]
1
B=[bij] = [5@5;‘—1 + 07— by = by 1))

Now, we define the inverse map. ((A,B) — T)

Given ASMs A and B of orders n and n + 1 respectively, we can reverse our steps and
construct A’ and B’, and hence Hr.
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The first and last rows and columns of A’ and B’ are forced, and record the heights of the
boundary vertices of AD,,, which are fixed for any tiling 7.
Consider an internal entry b;} e A vertex with height B; ; is surrounded by vertices of heights

i j>@; i_1,0;_1 j,; 1 j_1, and thus can differ from each of these by 1 or 3. It turns out that
there are only 6 distinct configurations of these vertices:

5 9 9 5 9
+ f
J—(—i—>—’r ?—«—i -------- 3 < 6 1% 3 e 6 —7 <« 6 7
+
q ; ) ; !
(i) (ii) (i) (iv) )
7 7
§—— 4 —-—5 O 5. i -------- §
|

vi)

FIGURE 12. 6 local vertex configurations for an internal entry in B; ;

Notice that b/ ; - and hence b; ; - is forced in all but one of these configurations. The case in

which b; ; is not forced, corresponds to there being a (4+1) in the (i, j/)** entry of the ASM
A. We can perform a similar case analysis for internal entries in A, and find that a; ; is not
forced in only one of the 6 possible local configurations. This configuration corresponds to
there being a (-1) in the (¢', j/)* entry of the ASM B.

Hence, if A is fixed and A(+) = no. of + 1s in A), we get 2"+ compatible ASMs B. Thus,

AD, = >, 2w
AeASM (n)

Equivalently, if B is fixed,
AD,= > = 2~®
BeASM(n+1)
Replacing n by n — 1, we get
ADy = Y @
BeASM(n)
In any ASM B, since each row sums to 1, B(+) — B(—) = n. Hence,
AD, = Y oae)
AeASM(n)

=2t > 240

AeASM (n)
= 2"AD,_,

Therefore, by induction,
n(n+1)

AD, =2
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Dear Darius Singh,

It is my pleasure to extend the following offer of INTERNSHIP to you on behalf of Rainet
Technology Private Limited, further to the interview and discussions you have had with

us.

We hope that you find this offer acceptable. You are expected to join duty on 20 sep, 2021 and
time duration for this internship for you is 3 month.

Scanned by CamScanner



18t — September - 2021
To,
Mr. Singh,
Sub: Letter of Internship
Dear Darius Singh,

We are pleased to offer you an Internship with The Tann Mann Foundation. Your acceptance of this offer
will make this a mutually binding contract.

Designation: Deep Learning Engineer (Intern)

Date of Joining: 19" September 2021

Duration: 4 months

Location: Work from home

Remuneration: Volunteering for the charitable cause.

Non-Disclosure Clause: During this internship you are bound by Non-Disclosure clause meaning that
you are not allowed to share any sensitive information of the organization with anyone without prior
permission of the Management. Any breach can lead to termination and legal action.

We welcome you and wish you every success in your career with us.

il

Mr. Rahul Nathan Mr. Darius Singh

Trustee Intern

The Tann Mann Foundation | www.thetannmanngaadi.org
Registered Office: M808 Brindavan Palms, Hosa Road, Bangalore - 560100
Mobile: +91 9341921581 | Email: WeCare @TheTannMannGaadi.Org

Scanned by CamScanner



(%2, mycaptain

Certificate of Competency

This Is to certify that

Niharika Garg

has been awarded Competency in MyCaptain’s Creative Writing Course

Niharika Garg was guided by Captain Ujjwal Srivastava and they undertook the following
projects in the same:

! Publish your first blog post /' Write a review for a book, movie, etc |--| Create a micro fiction tale

2 Write a monologue

For the month of December 2021

We wish you all the best for your future endeavours

Course ratified by
MW&

&
Sameer Ramesh <
(Chief Product Officer) o

KOMMUNE

Certificate ID:
18N56RUJDHWPM

NSR

C L incubated company A Climber Knowledge and Careers Pvt Ltd Initiative

A ATALTE




@ mycaptaln anush.r@mycaptain.in
- Q +91 8106104024
3rd Floor, Classic Arena, Hosur Rd, AECS

Layout - A Block, Singasandra,

Bengaluru, Karnataka 560068

Contact:
support@mycaptain.in
1800 121 676767

To: Whomsoever It May Concern

Subject: Letter of Recommendation for Niharika Garg

MyCaptain, an initiative by an NSRCEL, 1IM Bangalore incubated company, is an
online Learning platform awarded by the SDSN as one of the Top 50 youth led

solutions working on Quality Education & Decent work and economic growth.

It is with great pleasure that | recommend Niharika Garg, on the basis of the
performance in the MyCaptain Creative Writing Workshop in the month of
December, 2021. Niharika Garg performed extremely well during the workshop
and showed excellent skills as seen in the Project submissions and participation in
the regular activities. As the mentor, | have seen that in every Live video class
session, Niharika Garg was very participative and always willing to learn and
enhance sKkills in every aspect. Niharika Garg is always willing to put forth a unique
approach for the Projects that are assigned, while also adhering to the guidelines

and rules.

With this, | would take this opportunity to wish Niharika Garg, all luck for future
endeavors and hope for a bright future ahead.

Kind Regards,

Ujjwal Srivastava

Mentor Creative Writing Workshop CLI\\,
MB



Date: - January 10™, 2021

Dear Nandini,

I am delighted & excited to welcome you to VEGA Studios as a Content Writing Intern. At
VEGA Studios, we believe that our team is our biggest strength and we take pride in hiring ONLY
the best and the brightest. We are confident that you would play a significant role in the overall
success of the venture and wish you the most enjoyable, learning packed and truly meaningful

internship experience with VEGA Studios.

Your appointment wili be governed by the terms and conditions presented in the Annexure A.

We look forward to you joining us. Please do not hesitate to call us for any information you may
need. Also, please sign the duplicate of this offer as your acceptance and forward the same to us.

Congratulations!

Gajan Roy



Internship Offer with VEGA.

Annexure A

You shall be governed by the following terms and condition of service during your internship
with VEGA STUDIOS, and those may be amended from time to time.

1.

You are being hired as a Content Writing Intern. As a Content Writing Intern
you would be responsible for writing scripts of the provided movies.

Your date of joining is 10" January 2022 and the duration of the internship would be 1
month. During this time you are expected to devote your time and efforts solely to
VEGA Studios work. You are also required to let your mentor know about
forthcoming events (if there are any) in advance so that your work can be planned
accordingly.

You will be working remotely for the duration of the intemship. There will be catch ups
scheduled with your mentor to discuss work progress and overall internship experience
at regular intervals.

All the work that you will produce at or in relation to VEGA STUDIOS will be the
intellectual property of VEGA STUDIOS. You are not allowed to store, copy, sell,
share, and distribute it to a third party under any circumstances. Similarly you are
expected to refrain from talking about your work in public domains (both online such
as blogging, social networking site and offline among your friends, college etc.)
without prior discussion and approval with your mentor.

We take data privacy and security very seriously and to maintain confidentiality of any
students, customers, clients, and companies’ data and contact details that you may get
access to during your internship will be your responsibility. VEGA STUDIOS operates on
zero tolerance principle with regard to any breach of data security guidelines. At the
completion of the internship you are expected to hand over all VEGA STUDIOS
work/data stored on your Personal Computer to your mentor and delete the same

from your machine.



Internshi

6. During the appointment period you shall not engage yourselves directly or indirectly or
in any capacity in any other organization (other than your college). In the event of
breach of this condition, this appointment is liable to be terminated forthwith by the
company. In addition, you shall be liable to pay liquidated damages to the Company of
an extent estimated by the Company.

7. Under normal circumstances either the company or you may terminate this association
by providing a notice of 10 days without assigning any reason. However, the company
may terminate this agreement forthwith under situations of in-disciplinary behaviours.

8. You are expected to conduct yourself with utmost professionalism in dealing with your
mentor, team members, colleagues, clients and customers and treat everyone with due

respect.

9. VEGA STUDIOS is a start-up and we love people who like to go beyond the normal call
of the duty and can think out of the box. Surprise us with your passion, intelligence,
creativity and hard work — and expect appreciation & rewards to follow.

10. Expect constant and continuous objective feedback from your mentor and other team
members and we encourage you to ask for and provide feedback at every possible
opportunity. It’s your right to receive and give feedback — this is the ONLY way we
all can continuously push ourselves to do better.

11. Have fun at what you do and do the right thing — both the principles are core of what
VEGA STUDIOS stands for and we expect you to imbibe them in your day to day
actions and continuously challenge us if we are falling short of expectations on either of
them.

12. You will be provided Rs 1000 per month as stipend and Rs 100 —
additional incgntive based on the pperformance of thé) intern 0-Rs 150 asan

13. Certificate for internship will be provided in a digital format once He/she completes the
duration of internship



KYLO APPS

A Unit of Arihant Reclamation Pvt. Ltd. M

Date: 08/09/2021 APPS

TO WHOMSOEVER IT MAY CONCERN

This is to certify that Yashaswi Kafola worked with KYLO APPS
in the capacity of a Business Development Intern from 8 June
2021 to 8 September 2021.

He is a reliable and dedicated individual who would perform all
the tasks with utmost diligence and deliver effective solutions
within deadlines. Because of these qualities, he was also
promoted to the position of Team Lead and to the position of
Head of Business Development thereafter.

Yashaswi is an enthusiastic individual, who never ceases to
bring out of the box ideas to the table and has excellent
communication skills and a good rapport with his fellow interns
and superiors. He has added value to our organization with his
substantial contributions.

I recommend his good work and wish him all the luck and
success for his future endeavours.

o
SW/
Saumya Thakur
Founder - Kylo Apps

Contact- +91 8920607430 | +91 8860732624

hr@kyloapps.com
www.kyloapps.com




muskirahat
foundation

CERTIFICATE OF COMPLETION

Presented To

Yashaswi Kafola

for recognition of your performance in Fundraising Internship of about One
Month from 2nd June 2021 to 6th July 2021, for the children catered by
Muskurahat Foundation.

AMOUNT RAISED: Rs 1,100/-

W 8th July 2021

HIMANSHU GOENKA Date
President & Founder
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