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1. Introduction 
1.1 Background 

Air pollution is one of the most pressing environmental issues faced by modern society. With 

rapid industrialization, urbanization, and increasing vehicular emissions, the levels of harmful 

pollutants in the atmosphere have significantly risen. Pollutants such as particulate matter 

(PM2.5, PM10), nitrogen oxides (NO, NO2, NOx), carbon monoxide (CO), sulfur dioxide 

(SO2), and volatile organic compounds (VOCs) like benzene and toluene have detrimental 

effects on air quality. Poor air quality not only degrades the environment but also poses serious 

health risks to the population, particularly those with pre-existing respiratory conditions like 

asthma or chronic bronchitis. This is why the Air Quality Index (AQI), a metric used to assess 

and report daily air quality levels, plays a critical role in public health management and 

environmental policy-making. 

 

Air pollution refers to the contamination of the atmosphere by harmful substances including 

gases, particulate matter, chemicals, and biological molecules. These pollutants can come from 

both natural sources, such as wildfires and volcanic eruptions, and human activities like vehicle 

emissions, industrial processes, and the burning of fossil fuels. [1] 

Air pollution is one of the serious issues all around the globe and can cause a variety of health 

problems such as skin infections, eye diseases, throat infections, lung cancer, bronchitis 

diseases, respiratory diseases, cardiovascular issues, exacerbation of asthma, etc. According to 

WHO around 7 million people got affected with numerous diseases and reports of 1.3 million 

deaths due to air pollution. Long-term exposure of air pollutants may increase the chances of 

premature mortalities. Children might face developmental issues such as physiological and 

cognitive. Pregnant women face developmental issues which includes low birth weight, 

premature births, etc. In addition to that it also contributes to environmental degradation, 

including acid rain, depletion of the ozone layer, global warming, introduces a serious threat to 

plant, and also impacts our economy seriously. Huge financial investments are required to 

mitigate the air pollution which leads to economic losses for the government and organizations. 

[2] 

India regularly sees AQI values exceeding 300 in many major cities, which indicates a 

"hazardous" level of pollution. For example, Delhi is often in the spotlight for its alarmingly 

high AQI during the winter months, driven by a combination of vehicular emissions, industrial 

discharges, and crop-burning activities in nearby states. In some instances, AQI readings in 

Delhi have even surpassed 500, leading to public health emergencies. Studies suggest that long-

term exposure to high PM2.5 levels can reduce life expectancy, contribute to chronic illnesses 

such as asthma and bronchitis, and increase the risk of heart attacks. In terms of specific 

pollutant data, the average annual PM2.5 concentration in several Indian cities frequently 

exceeds the World Health Organization (WHO) guideline of 10 µg/m³ by several multiples. 

Cities like Kolkata, Mumbai, and Chennai also experience high concentrations of other harmful 

pollutants such as NO₂ and CO due to traffic congestion and industrial emissions. Furthermore, 

there is an upward trend in ground-level ozone pollution, which exacerbates respiratory 

problems, particularly in vulnerable populations like children and the elderly. [3] 



 

 
 

AQI calculation 

The Air Quality Index (AQI) is a numerical value that reflects the quality of air in a specific 

area, providing a measure of pollution levels and their potential impact on human health. The 

AQI is calculated based on the concentrations of key air pollutants such as particulate matter 

(PM10 and PM2.5), ozone (O₃), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), carbon 

monoxide (CO), and ammonia (NH₃). Each of these pollutants has its own individual sub-index 

value that contributes to the overall AQI. The AQI calculation for each pollutant follows a 

linear interpolation method, using breakpoints that correspond to different concentration ranges 

for each pollutant. These breakpoints are linked to AQI categories that represent different 

health impact levels: "Good," "Satisfactory," "Moderate," "Poor," "Very Poor," and "Severe." 

The formula used for calculating the AQI for a given pollutant is: 

AQIp = ((IHI−ILO) /(CHI−CLO))×(Cp−CLO)+ILO 

Where, AQIp is the AQI for pollutant p, Cp is the actual concentration of pollutant p, CHI and 

CLO are the upper and lower concentration limits for the AQI category in which Cp falls, IHI and 

ILO are the corresponding AQI values for the upper and lower concentration breakpoints. 

The final AQI value is determined by taking the maximum AQI among all pollutants being 

monitored for a given time period. This ensures that the pollutant with the highest sub-index, 

which poses the greatest health risk, dominates the overall AQI value for that location. For 

example, if the AQI for PM2.5 is the highest among all pollutants in a city on a particular day, 

this will dictate the overall AQI level and the associated health advisory. The index helps 

communicate air quality to the public in a simple and standardized way, offering clear guidance 

on whether the air is safe to breathe and what actions individuals should take to protect their 

health.  

The AQI includes six color-coded categories, each corresponding to a range of index values. 

The higher the AQI value, the greater the level of air pollution and the greater the health 

concern. For example, an AQI value of 50 or below represents good air quality, while an AQI 

value over 300 represents hazardous air quality. 

For each pollutant an AQI value of 100 generally corresponds to an ambient air concentration 

that equals the level of the short-term national ambient air quality standard for protection of 

public health. AQI values at or below 100 are generally thought of as satisfactory. When AQI 

values are above 100, air quality is unhealthy: at first for certain sensitive groups of people, 

then for everyone as AQI values get higher. 

The AQI is divided into six categories. Each category corresponds to a different level of health 

concern. Each category also has a specific color. The color makes it easy for people to quickly 

determine whether air quality is reaching unhealthy levels in their communities. [4] 

 



 

 
 

 

 

 

 

 

1.2 Problem Statement 

Predicting AQI based on various pollutants such as PM2.5, PM10, CO, NO, NO2, and ozone 

is a complex challenge due to the dynamic interaction between these pollutants, weather 

conditions, and geographical factors. Accurate AQI prediction allows authorities to take 

proactive steps to manage pollution levels and protect public health. The main goal of this 

project is to develop machine learning models that can accurately predict AQI based on the 

concentrations of various pollutants, thereby providing timely and actionable information. 

 

 

1.3 Importance 

Accurate AQI prediction holds immense importance in several domains: 

● Public Health: Timely AQI predictions enable individuals to take preventive 

measures, such as avoiding outdoor activities during periods of high pollution. It also 

helps healthcare providers to identify and address health issues related to air pollution 

exposure. 

● Policy Making: Governments can use AQI predictions to develop and implement 

effective air pollution control policies, such as vehicle emission standards, industrial 

regulations, and urban planning strategies. 

● Environmental Awareness: AQI predictions can raise public awareness about air 

pollution and its impacts, encouraging individuals to adopt sustainable practices and 

support environmentally friendly initiatives. 

 

 

 

Fig 1.1. AQI categories for different pollutants 



 

 
 

 

2.Objective 
The main objective of this project is to build a machine learning model capable of accurately 

predicting the Air Quality Index (AQI) based on the concentration of various pollutants, 

including PM2.5, PM10, NO, NO2, NOx, CO, Ozone, SO2, and other factors such as wind 

speed and direction. By doing so, the model can provide real-time or near real-time AQI 

forecasts, which can be used to inform public health policies, individual precautions, and 

environmental actions. 

The project also aims to: 

● Identify the most influential pollutants contributing to AQI levels. 

● Optimize different machine learning models, such as Decision Trees, Random Forests, 

Gradient Boosting, and others, to achieve the best prediction accuracy. 

● Develop visualization tools to analyze and communicate model results and pollutant 

trends. 

2.1 Scope 

The scope of this project is defined as follows: 

● Geographic Area: The model focuses on air quality data collected from specific 

regions or cities. For this project, the dataset might cover a specific city (e.g., Kolkata) 

or a broader area depending on available data. 

● Time Period: The dataset used includes air quality and pollutant data from January 1, 

2015, to December 31, 2020. The model is trained on this time period to make 

predictions for the following months. 

● Predictors: The main predictors (features) used in the model include various pollutants 

(PM2.5, PM10, NO, NO2, NOx, CO, etc.), meteorological variables like wind speed 

and direction, and time-related factors such as month or season. 

2.2 Challenges 

Several challenges were encountered during the development of this project: 

1. Data Quality and Missing Values: Air pollution data often contains missing values 

due to sensor malfunctions, downtime, or calibration errors. Imputing these missing 

values effectively was critical for ensuring the accuracy of the model. 

2. Multicollinearity: Some pollutants are strongly correlated with each other (e.g., NO, 

NO2, and NOx), which can cause issues in model performance. It was necessary to 

handle multicollinearity through feature engineering or by selecting the most relevant 

features. 

3. Seasonality and Temporal Trends: Air pollution levels can fluctuate significantly 

based on seasonal changes, holidays, or local activities. Capturing these temporal trends 

and seasonality factors is essential for making accurate predictions. 

4. Complexity of Pollutant Interaction: Various pollutants interact with each other in 

complex ways, influenced by weather conditions, geographical factors, and human 

activity. Modeling these relationships requires careful selection of machine learning 

algorithms. 

5. Model Generalization: While the model can perform well on historical data, ensuring 

that it generalizes to future or unseen data is a challenge, particularly when considering 

evolving environmental policies and changes in pollutant sources. 

 

 

2.3 Methodology 

 

2.3.1.  Experimental setup 



 

 
 

The dataset utilized for the proposed model evaluation is the publicly available Air Quality 

Data in India (2015-2020) from the Kaggle repository. It comprises air quality and air quality 

index (AQI) data recorded at hourly and daily intervals across various stations in 26 major 

cities in India. The dataset includes attributes such as date, month, year, PM2.5, PM10, NO, 

NO2, NOx, NH3, CO, SO2, O3, Benzene, Toluene, AQI, and AQI_Bucket. The AQI_Bucket 

classifies AQI into six categories: good, satisfactory, moderate, poor, very poor, and severe. 

For the study, Delhi, Guwahati, and Thiruvananthapuram are selected from different 

geographic regions of India. A daily timeframe was chosen for model experimentation. 

Separate CSV files are being created for each of these cities. Most parameters are common 

across the selected cities; however, in cases of discrepancies, certain parameters are entirely 

omitted from the datasets. Additionally, AQI_Bucket is excluded from the new datasets, as the 

model experimentation focused on a regression-based approach. 

 

1.  Preprocessing 

The dataset used for the proposed model experimentation contained null values and outliers, 

necessitating data cleaning. First, the null values are identified and analyzed, then replaced with 

the mean values of their respective columns. However, columns with a significant number of 

null values are entirely removed from the dataset. Outliers are first detected and addressed 

using a quartile-based method that scaled the extreme values. After that the processed data was 

once against analyzed 

 

2. Feature selection, Independent and Dependent variables 

The individual parameters within each dataset are correlated with one another through various 

methods such as multiple plots, a correlation table, and a heat map generated from the 

correlation table. Emphasis is placed on parameters that exhibited a certain desired level of 

correlation, while those that did not meet this threshold are being removed from their respective 

datasets. Each city's dataset displayed its own unique correlation patterns, so there is no strict 

requirement to select the same parameters across all datasets. However, it is essential to note 

that parameters like PM2.5 and PM10 are mandatory for all datasets used in the prediction model. 

Following this, based on feature selection, the independent variables were determined 

according to the specific dataset of each city, while the dependent variable remained the same 

across all datasets, i.e., 'AQI'. 

The final parameters are once again compared after then once again compared with accordance 

to their importance before splitting the test and train data. The difference here is that, all the 

required parameters for predicting AQI, are now stored as independent variables and are 

correlated against AQI in the form of horizontal bar-graph. 

 

3. ) Spiting train and test data 

The training and testing datasets are splited using `sklearn` libraries, with 70% of the data 

allocated for training. 

 

4.  Working with the model 

The models used, are then imported from sklearn, Linear Regression, Lasso Regression, Ridge 

Regression, Decision Tree (as regression model), Random Forest (as regression model), KNN 

(as regression model), are being used as prediction model. Every model is first trained with the 

train data and then the test data is implemented, each test and train data are scored with R2 



 

 
 

scores. Mean score was used for scoring the prediction on the created variables in a cross 

validated method, again using R2 scores. Predicted AQI values are then plotted as a histogram, 

also a scatter plot is plotted comparing predicted values and actual values, and lastly line plot 

is plotted, again for comparison purpose. 

Each model is hypertuned or optimised, irrespective of any display of overfitting, so to get 

better results. Linear Regression is optmesed with Lasso and Ridge Regression, Decision Tree 

and Random Forest is hypertuned with Grid Search CV and Randomized Search CV, 

respectively. While KNN is hypertuned with different K-values.   

 

5.  Comparing Scores 

R2, MAE, MSE, RMSE scores for all of the models (before and after hypertuning) are then 

compared to each other, topic, shows the comparison below.  

 

6.  AQI calculator 

A function is created taking the basis of the entire models used for prediction, which inputs all 

the selected parameters and outputs the AQI value for each of the model, while the tagging the 

model along with it. 

 

 

 

 

 
 

 

 

Fig.2.1. displays the function that inputs variables and calculate the AQI levels using the models 
that have been trained with the datasets. This function holds true for all the datasets. 



 

 
 

3.Dataset Overview 
3.1 Dataset Source 

The dataset used for this project likely originates from official government agencies, 

environmental organizations, or air quality monitoring stations that continuously track 

pollution levels across various cities. Common sources for such datasets include the Central 

Pollution Control Board (CPCB) in India. These agencies regularly publish air quality data 

based on readings from automated monitoring stations located across cities. 

3.2 Features 

The dataset consists of several important features, which include various air pollutants and 

meteorological data that influence AQI levels. The key features are: 

1. PM2.5: Fine particulate matter smaller than 2.5 micrometers, a major component of air 

pollution that can penetrate the lungs and affect respiratory health. 

2. PM10: Particulate matter smaller than 10 micrometers, which can cause throat irritation 

and exacerbate lung conditions. 

3. NO2 (Nitrogen Dioxide): A harmful gas primarily produced by vehicle emissions and 

industrial activities. 

4. NO: Nitric oxide, often produced during combustion, which can react to form NO2. 

5. CO (Carbon Monoxide): A colorless, odorless gas that can be dangerous in high 

concentrations, often emitted from cars and other combustion sources. 

6. Ozone (O3): A reactive gas present in both the Earth's upper atmosphere (good ozone) 

and at ground level (bad ozone), which can cause respiratory problems. 

7. Total NOx: A combined measure of nitrogen oxides (NO, NO2, NOx) that affect air 

quality. 

3.3 Target Variable 

The target variable in this dataset is the AQI (Air Quality Index). The AQI provides a 

simplified numerical measure to convey the overall quality of the air. Higher AQI values 

indicate worse air quality, with values over 100 typically considered unhealthy. 

 

3.4 Data Preprocessing 

Several preprocessing steps were performed to prepare the dataset for machine learning: 

1. Handling Missing Values: The dataset contained some missing values, likely due to 

sensor malfunctions or data collection gaps. These missing values were imputed using 

median values to avoid introducing bias into the model. Median imputation was chosen 

as it is robust against outliers. 

2. Feature Engineering: Related pollutant variables such as NO, NO2, and NOx were 

combined into a new feature called Total NOx to reduce multicollinearity and better 

represent the overall impact of nitrogen oxides. 

3. Dropping Irrelevant Features: Some features, such as Xylene, were dropped because 

they had no or insufficient data across the dataset. 

4. Scaling: Since different pollutants are measured in different units, it was important to 

scale the data to ensure all features contribute equally to the machine learning model. 

Standardization (subtracting the mean and dividing by the standard deviation) or 

MinMax scaling was applied. 

5. Date and Time Processing: The date column was converted to a suitable datetime 

format, and additional time-related features like the month or season were extracted to 

capture temporal trends in air pollution. 

 

 

 



 

 
 

 

4.Tools and Technologies 

 

4.1 Programming Languages 

● Python: The primary programming language used for this project is Python due to its 

extensive libraries and frameworks for data analysis, machine learning, and 

visualization. Python's simplicity and readability make it an ideal choice for both 

beginners and experienced data scientists. 

4.2 Libraries/Frameworks 

● Pandas: A powerful library used for data manipulation and analysis. It provides data 

structures such as DataFrames, which make it easy to handle and analyze structured 

data efficiently. 

● NumPy: This library is used for numerical computations and provides support for large, 

multi-dimensional arrays and matrices, along with a collection of mathematical 

functions to operate on these arrays. 

● Scikit-learn: A key library for machine learning in Python. It provides a variety of 

algorithms and tools for classification, regression, clustering, and model evaluation. 

Scikit-learn is used for implementing machine learning models, including decision 

trees, random forests, and gradient boosting. 

● Matplotlib: A widely used plotting library in Python that provides a flexible way to 

create static, animated, and interactive visualizations. It is often used for creating basic 

plots and figures. 

● Seaborn: Built on top of Matplotlib, Seaborn provides a high-level interface for 

drawing attractive and informative statistical graphics. It simplifies the process of 

creating complex visualizations, such as heatmaps and pair plots. 

● XGBoost: An optimized gradient boosting library designed to be highly efficient and 

scalable. It is particularly useful for structured/tabular data and is known for its 

performance in machine learning competitions. 

4.3 ML Algorithms 

● Decision Trees: A simple yet powerful algorithm that uses a tree-like model of 

decisions. Decision trees are interpretable and can handle both numerical and 

categorical data. 

● Random Forests: An ensemble method that combines multiple decision trees to 

improve prediction accuracy and control overfitting. Random forests are robust and 

effective for a wide range of datasets. 

● Gradient Boosting: An iterative ensemble technique that builds trees one at a time, 

with each new tree correcting errors made by the previous ones. It is highly effective 

for regression and classification problems. 

● XGBoost: An advanced gradient boosting algorithm that optimizes the model 

performance through techniques like regularization, which helps prevent overfitting. 

4.4 Development Tools 

● Jupyter Notebooks: An open-source web application that allows for the creation and 

sharing of documents that contain live code, equations, visualizations, and narrative 

text. Jupyter Notebooks are particularly useful for data exploration, visualization, and 

documentation of the analysis process. 

 

 

 

 



 

 
 

5.implementation 
5.1 Data Preprocessing 

1. Handling Missing Values: 

o The dataset contained missing values due to sensor malfunctions or gaps in data 

collection. To handle these missing values, the median imputation method was 

employed. This approach was chosen because the median is robust to outliers 

and provides a central tendency measure that minimizes bias. 

2. Outlier Detection: 

o Outliers in the dataset were identified using visualizations such as box plots and 

scatter plots. If necessary, outliers could be addressed by either removing them 

or applying transformations (like logarithmic) to reduce their impact on the 

model. 

3. Feature Engineering: 

o Combining pollutant features: The individual pollutant features—NO, NO2, 

and NOX—were combined into a single feature called Total NOx. This 

aggregation helps reduce multicollinearity and simplifies the model by focusing 

on the overall contribution of nitrogen oxides to air quality. 

4. Scaling: 

o Since the features were measured on different scales, feature scaling was 

applied to standardize the data. Techniques such as Min-Max scaling or 

Standardization (Z-score normalization) were used to bring all features to a 

similar range, enhancing model performance. 

5.2 Train-Test Split 

● The dataset was divided into training and testing sets using an 80-20 split. This means 

that 80% of the data was used for training the model, while the remaining 20% was 

reserved for testing. This approach is beneficial because it provides enough data for the 

model to learn effectively while still having a separate dataset to evaluate its 

performance. The test set serves as a safeguard against overfitting, ensuring that the 

model generalizes well to unseen data. 

5.3 Model Building 

Multiple machine learning models were implemented to predict AQI based on pollutant levels: 

1. Decision Tree: 

o A straightforward algorithm that splits the data into branches based on feature 

values. It’s interpretable but can easily overfit the training data. 

2. Random Forest: 

o An ensemble method that uses multiple decision trees to improve prediction 

accuracy and robustness. Random Forests reduce overfitting by averaging 

predictions from different trees. 

3. Gradient Boosting: 

o An ensemble technique that builds trees sequentially, where each tree corrects 

errors from the previous one. This model tends to perform well for complex 

datasets. 

4. XGBoost: 

o A powerful implementation of gradient boosting that optimizes for speed and 

performance. It includes additional features like regularization, which helps 

mitigate overfitting. 

5.4 Parameter Tuning 

● Hyperparameter optimization was performed using techniques like GridSearchCV and 

RandomizedSearchCV. 



 

 
 

o GridSearchCV involves exhaustively searching through a specified subset of 

hyperparameters to find the best combination. 

o RandomizedSearchCV samples a given number of candidates from a 

parameter space, allowing for faster execution when compared to GridSearch. 

This tuning process helps to improve model performance by identifying the 

most suitable hyperparameters. 

5.5 Cross-Validation 

● K-Fold cross-validation was employed to assess model performance. This method 

involves dividing the training dataset into K subsets (or folds). The model is trained on 

K-1 folds and tested on the remaining fold. This process is repeated K times, with each 

fold serving as the test set once. Cross-validation helps ensure that the model's 

performance is consistent across different subsets of the data, reducing the likelihood 

of overfitting and providing a more accurate estimate of model generalization to unseen 

data. 

 

 

6. Results and Discussion

6.1 Results 
6.1.1 Fold Wise Best Model Performances across cities in comparison to Lagged Variables 
Table 4. Delhi Fold Wise Model Performance for Linear Regression 

 Without Lagged Variables With Lagged Variables 

Fold RMSE MSE MAE R2 Score RMSE MSE MAE R2 Score 

1 51.86 2689 40.64 77.53 38.89 1512 29.56 89.95 

2 73.54 5409 60.81 76.80 40.40 1632 30.24 88.42 

3 38.11 1452 28.10 88.73 35.77 1279 27.23 88.97 

4 36.98 1367 30.18 89.06 44.60 1989 30.98 86.29 

5 38.71 1498 32.48 89.66 35.31 1247 26.56 91.91 

Average 47.84 2483 38.44 84.36 39.00 1532 28.91 89.11 

 

 
 

 
Figure 5: Scatter Plot of Actual vs Predicted AQI 

by Linear Regression. 

 
 

 

 
 

 

 
 

 

Figure 6: Scatter Plot of Actual vs 

Predicted AQI by GradientBoosting 

Regressor  

 
 

 

Table 5. Delhi Fold Wise Model 
Performance for GradientBoosting 

Regressor 

 Without Lagged Variables With Lagged Variables 

Fold RMSE MSE MAE R2 Score RMSE MSE MAE R2 Score 

1 50.95 2595.60 39.60 78.32% 29.96 897.73 22.17 94.04% 



 

 
 

2 61.84 3824.13 47.77 83.60% 28.61 818.80 20.11 94.20% 

3 37.42 1400.20 28.59 89.14% 28.48 811.01 20.01 93.02% 

4 32.18 1035.67 23.90 91.72% 29.76 885.63 20.71 93.90% 

5 26.89 723.26 20.70 95.01% 24.75 612.44 17.20 96.03% 

Average 41.86 1915.77 32.11 87.56% 28.31 805.12 20.04 94.24% 

 

 

Figure 7: (Left) Feature Importance from GBR without Lagged Variables. (Right) Feature Importance from GBR with Lagged Variables 

 
Table 6. Guwahati Fold Wise Model Performance for GradientBoosting Regressor 

 Without Lagged Variables With Lagged Variables 

Fold RMSE MSE MAE R2 Score RMSE MSE MAE R2 Score 

1 123.10 15154.40 38.64 36.80% 23.87 570.01 18.31 63.33% 

2 104.85 10993.90 32.34 22.08% 24.24 587.69 19.89 43.85% 

3 108.78 11833.46 55.41 52.29% 48.00 2304.45 28.63 62.24% 

4 16.14 260.57 11.43 -0.73% 9.16 83.96 6.67 67.54% 

5 48.27 2330.48 27.92 52.62% 36.47 1329.79 19.82 72.97% 

6 50.11 2511.03 40.09 55.90% 31.65 1001.98 25.39 82.40% 

7 36.86 1358.44 27.59 62.17% 31.20 973.16 21.76 72.90% 

8 38.31 1467.90 30.71 73.42% 33.06 1092.66 24.31 80.21% 

9 28.14 791.61 18.51 82.87% 17.82 317.73 12.51 93.12% 

10 9.70 94.02 6.86 50.71% 8.25 68.07 6.51 64.31% 

Average 56.43 4679.58 28.95 48.81% 26.37 832.95 18.38 70.29% 

 
 

 

 
 

 

 
 

 

 
Figure 

8: 

Metric 
scores 

of 

Guwahati visualized across folds  



 

 
 

 
 

  

 
 

 

 
Table 7. 

Hyderabad Fold Wise Model Performance for GradientBoosting Regressor 

 Without Lagged Variables With Lagged Variables 

Fold RMSE MSE MAE R2 Score RMSE MSE MAE R2 Score 

1 58.01 3365.64 42.12 22.14% 31.83 1013.30 19.92 76.56% 

2 26.94 725.99 20.37 56.32% 27.65 764.39 21.19 54.01% 

3 17.90 320.43 14.27 72.98% 13.98 195.50 11.16 83.52% 

4 12.24 149.83 9.59 87.14% 8.35 69.66 6.67 94.02% 

5 14.24 202.78 12.43 84.15% 8.83 78.00 7.00 93.90% 

Average 25.87 952.93 19.76 64.55% 18.13 424.17 13.19 80.40% 

 
Figure 9: (Left) 

Feature 

Importance from 

GBR without 
Lagged Variables. 
(Right) Feature 

Importance from 
GBR with Lagged 

Variables 

 
 

Table 8. Kolkata 
Fold Wise Model 

Performance for Ridge Regression 

 Without Lagged Variables With Lagged Variables 

Fold RMSE MSE MAE R2 Score RMSE MSE MAE R2 Score 

1 13.92 193.68 9.85 89.51% 13.31 177.06 9.60 90.41% 

2 88.34 7803.25 75.85 19.18% 81.50 6642.39 68.16 31.21% 

3 36.23 1312.88 30.26 83.59% 27.39 750.07 22.53 90.62% 

4 26.58 706.72 22.73 65.16% 21.68 470.12 18.23 76.82% 

5 14.74 217.17 10.00 24.40% 10.18 103.56 8.01 63.95% 

6 8.00 64.01 6.16 57.93% 5.33 28.40 4.28 81.34% 

7 26.84 720.23 20.06 86.84% 24.27 589.16 15.72 89.24% 

8 25.84 667.72 19.97 77.73% 21.62 467.21 16.99 84.42% 

9 15.92 253.30 11.50 91.36% 11.69 136.62 8.23 95.34% 

10 5.18 26.80 4.12 77.65% 6.74 45.45 5.18 62.11% 

Average 26.16 1196.58 21.05 67.34% 22.37 941.00 17.69 76.54% 

 

 



 

 
 

 
Figure 10: Scatter Plot of Actual vs Predicted AQI by Ridge Regression 

 

 
Table 9. Visakhapatnam Fold Wise Model Performance for GradientBoosting Regressor 

 Without Lagged Variables With Lagged Variables 

Fold RMSE MSE MAE R2 Score RMSE MSE MAE R2 Score 

1 41.84 1750.45 30.16 50.38% 16.95 287.31 11.35 92.54% 

2 17.07 291.45 12.82 57.48% 19.03 362.13 11.88 88.43% 

3 25.94 672.99 17.90 88.90% 15.57 242.32 10.47 89.69% 

4 24.05 578.18 14.76 67.51% 14.03 196.93 10.37 93.60% 

5 16.90 285.45 12.14 81.65% 19.89 395.45 11.85 83.16% 

Average 25.16 715.70 17.56 69.18% 17.09 296.83 11.19 89.49% 

 

6.1.2 Overall model performances across cities 
Table 10. R2 scores across all models and all cities 

 Without Lagged Variables  With Lagged Variables  

Model Delhi Guwahati Hyderabad Visakhapatnam Kolkata Delhi Guwahati Hyderabad Visakhapatnam Kolkata  

Linear 84.36% 40.11% 71.52% 69.36% 67.25% 89.11% 39.83% 74.18% 86.02% 76.09% 

Ridge 84.36% 44.67% 71.46% 69.86% 67.34% 89.10% 28.36% 74.66% 86.03% 76.54% 

Lasso 84.36% 41.23% 71.35% 69.53% 67.12% 89.11% 32.69% 74.34% 86.11% 76.26% 

DTR 82.45% 37.80% 59.21% 58.42% 55.05% 88.36% 42.59% 70.26% 81.90% 53.93% 

XGB 85.71% 35.50% 69.91% 67.56% 58.85% 94.01% 64.51% 79.10% 89.44% 69.52% 

GBR 87.56% 48.81% 64.55% 69.18% 62.08% 94.24% 70.29% 80.40% 89.49% 69.50% 

Average 84.80% 41.35% 68.00% 67.32% 62.95% 90.66% 46.38% 75.49% 86.50% 70.31% 

 

 

 

 
Figure 11. Increase in R2 score due to Lagged 
Variables across all models 



 

 
 

 

 

 

 

 

 

 

 
Figure 12. R2 score visualized across Models with 

and without Lagged Variables 

 

 
 

 

 

 

 

 

 

 

 

 

 

6.2 Discussions
6.2.1 Delhi 

The Linear Regression model improved significantly with the inclusion of lagged variables. 

The average R² score increased from 84.36% (without lagged) to 89.11% (with lagged). The 

RMSE and MAE metrics also improved, showing better predictive performance with lagged 

variables. The GradientBoosting Regressor (GBR) achieved an impressive improvement, with 

the R² increasing from 87.56% (without lagged) to 94.24% (with lagged). This shows that GBR 

effectively learned from the lagged features and performed robustly in Delhi. 

562.2 Guwahati 

The overall performance across models was lower without lagged variables, but lagged inputs 

provided substantial improvements. For GBR, the R² increased from 48.81% to 70.29% when 

lagged variables were included. This highlights the importance of considering temporal 

features in AQI prediction for Guwahati, which greatly boosted the model’s predictive 

capability. 

6.2.3 Hyderabad 

Similar improvements were observed in Hyderabad, with GBR showing a marked increase in 

R² from 64.55% (without lagged) to 80.40% (with lagged). Lagged features clearly helped the 

models better capture air quality variations in this city. 

6.2.4 Kolkata 

There was an overall improvement in model performance with lagged variables for all models, 

with GBR showing an R² increase from 62.08% to 69.50%. This suggests that including lagged 

features helps models account for the temporal dependencies in AQI better in Kolkata. 

6.2.5 Visakhapatnam 

GBR exhibited improved performance here as well, with an R² increasing from 69.18% to 

89.49% due to lagged variables, making it the best-performing model for this city. The addition 

of lagged variables in Visakhapatnam resulted in more accurate predictions across all models, 

especially for GBR and XGB. 



 

 
 

6.2.6 R² Score Comparison 

Across all models and cities, the inclusion of lagged variables consistently improved the R² 

scores. The Gradient Boosting Regressor (GBR) emerged as the best-performing model across 

most cities. For example, in Delhi, it achieved an R² score of 94.24% with lagged variables. 

XGBoost (XGB) also showed good performance, particularly in Hyderabad and 

Visakhapatnam, where its R² scores increased to 79.10% and 89.44%, respectively, when 

lagged variables were included. 

6.2.7 Model Average Performance 

The average R² score across all cities for all models improved from 84.80% (without lagged) 

to 90.66% (with lagged), showing that the inclusion of lagged variables led to a significant 

overall improvement in AQI prediction. GBR consistently performed better than other models, 

indicating its effectiveness in capturing temporal dependencies and non-linear relationships in 

the data. 

6.2.8 City-Specific Observations 

Delhi and Visakhapatnam had the highest gains in R² score with the inclusion of lagged 

variables, particularly for advanced models like GBR and XGB. Guwahati and Hyderabad saw 

notable improvements, though their R² scores remained lower than Delhi and Visakhapatnam, 

suggesting the models may have struggled with more complex or noisier data in these cities. 

However, lagged variables did contribute to improved predictions across all cities. 

 

 

 

 

7.Conclusion and Future Work 

 
This research presents an alternative and robust approach to Air Quality Index (AQI) prediction 

by incorporating temporal dependencies through the inclusion of lagged pollutant variables. 

Unlike traditional models that often ignore the time sequence in AQI data, our study 

emphasizes the importance of respecting the temporal nature of air quality data. Through the 

use of a Nested Cross-Validation framework, this paper ensures rigorous and unbiased 

evaluation of different models, preventing data leakage and overfitting, which are common 

issues in time-series forecasting.  

 

The introduction of lagged variables (e.g., PM2.5_lag1, PM10_lag1) significantly improved 

the predictive power of the models across all cities, as demonstrated by the consistent increase 

in R² scores. Notably, models like Gradient Boosting Regressor (GBR) and XGBoost (XGB) 

capitalized on the temporal information, yielding better performance, with GBR achieving the 

highest R² score of 94.24% for Delhi. The results underscore that incorporating lagged 

variables better captures the dynamic nature of pollutants and their effect on AQI, making the 

predictions more reflective of real-world conditions. 

 

 

 

Moreover, the study utilized a TimeSeriesSplit method within the cross-validation framework, 

ensuring that the models trained on past data were evaluated on future unseen data, replicating 

real-world applications more effectively. The nested hyperparameter tuning, carried out within 

this time-series structure, further enhanced model performance by optimizing key parameters 

in a systematic and unbiased manner. 

 



 

 
 

In comparison to conventional approaches that often jumble rows or ignore temporal structures, 

our model is more rigorous and applicable to real-world AQI forecasting, where time 

dependencies are critical. The integration of lagged features and time-respecting model 

evaluations ensures that this method not only yields higher predictive accuracy but also 

enhances the model's generalizability for real-world applications in urban air quality 

monitoring and policymaking. 

 

Future work can extend this approach by incorporating additional temporal features, such as 

weather data or long-term seasonal effects, to further improve model performance and 

reliability. The field can also explore how exogenous factors—such as economic, social, and 

quality-of-life indicators—might influence air quality. The aim could be to investigate any 

correlations that exist which could lead to deeper insights and recommendations for policy 

interventions. Alongside this exploring Hybrid Models that combine traditional forecasting 

methods with non-linear techniques such as decision trees and neural networks could also be 

employed with the goal of capturing any unexplained variance in the residuals that may not 

have been addressed by the initial forecasting models.  The use of advanced ensemble methods 

or deep learning architectures in a similar framework could also push the boundaries of AQI 

prediction accuracy. Hence, the author believes there remains a lot of work to be discovered in 

this sub-field that is at the intersection of Air Quality and Machine Learning. 
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9.Apendex1  

Code and Output: 

 

 
 

https://clip.cpcb.gov.in/index.php/faq/


 

 
 

 
 

 

 

 

 

 
 

 

 

 

 



 

 
 

 

 
 



 

 
 

 
 

 

 

 

 



 

 
 

 

 
 

 
 



 

 
 

 
 

 

 
 



 

 
 

 
 

 

 
 

 

 



 

 
 

 
 

 
 

 



 

 
 

 
 

 

 
 

 



 

 
 

 
 

 



 

 
 

 

 

 

 

 

 

 
 

 

 

 



 

 
 

 
 

 

 

 

 
 

 



 

 
 

 
 

 

 
 

 



 

 
 

 
 

 

 

 

 



 

 
 

 

 

 

 

 

 
 

 

 
 

 

 



 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


