SRI VENKATESWARA INTERNSHIP PROGRAM
FOR RESEARCH IN ACADEMICS

(SRI-VIPRA)

SRI-VIPRA

Project Report of 2024: SVP-2452

“Air Pollution Prediction with Artificial Intelligence(Al) &
Machine Learning (ML):

A case study of Indian cities”

IQAC
Sri Venkateswara College
University of Delhi
Benito Juarez Road, Dhaula Kuan, New Delhi
New Delhi -110021

SRIVIPRA PROJECT 2024

Title : ...Air Pollution Prediction with Al & ML:A case study of Indian cities..

Details of Mentors

Name of Mentor: Dr. Tarakeswara Rao K
Name of Department: Electronics
Designation: Assistant Professor

Name of Co-Mentor: Dr. Lalita Josyula
Name of Department: Electronics

Designation: Professor
oA

L\

List of students under the SRIVIPRA Projct

Name of Roll Course Signature
S.No | Photo the number
student
1622049 | B.Sc. (Hons.)
‘ Sumit Electronics Sumnit Kumon 2inka
1 i/ Kumar
M& Sinha
. B.Sc.(P) Life
Olkyam 1122053 | Sciences /
2 Jyotish
= Chetia g
B.Sc. (H) W
1722043 | Mathematics -
3 Abhinav
I Mallick
XKelile
KT&MK.QAL AL {.}»fj

Signature of Mentor

Signature of Co-Mentor

Certificate of Originality

This is to certify that the aforementioned students from Sri Venkateswara College
have participated in the summer project SVP-2452 titled “Air Pollution
Prediction with Al & ML: A case study of Indian cities”. The participants
have carried out the research project work under our guidance and supervision
from 1% July, 2024 to 30" September 2024. The work carried out is original and

carried out in an online/offline/hybrid mode.

= % .‘L,(Z—

KT&M}Q@A AL i;.\{
Signature of Mentor Signature of Co-Mentor

Acknowledgements

We would like to express our gratitude and thanks to our Professors and Mentors,
Dr. Tarakeswara Rao Kaviti & Prof. Lalita Josyula for guiding us in this project.
They provided us with their valuable suggestions throughout the process. They
encouraged us to undertake this project from time to time.

We would also like to give special thanks to Sri Venkateswara College for
providing all necessary facilities to carry out this Project smoothly. We will keep
on trusting the College facilities for my future endeavours in the college.

We would like to express our sincere thanks to the Principal of Sri Venkateswara
College, University of Delhi for organizing the SRIVIPRA internship Program,
2024. This program has helped us to put our scientific and computational
understanding to application.

We would also like to thank the Coordinators of SRIVIPRA program 2024 for
providing us the opportunity to be a part of this SRIVIPRA PROJECT 2024.

We would also like to thank our family and friends for supporting us throughout
this project.

TABLE OF CONTENTS

w
Z
o

Topic

Page No.

Introduction

Objectives & Methodology

Dataset Overview

Tools and Technologies

Implementation

Result and Discussion

Conclusion and Future Development

References

©| *°f N o g & W NE

Appendix1: Code and Output

1. Introduction

1.1 Background

Air pollution is one of the most pressing environmental issues faced by modern society. With
rapid industrialization, urbanization, and increasing vehicular emissions, the levels of harmful
pollutants in the atmosphere have significantly risen. Pollutants such as particulate matter
(PM2.5, PM10), nitrogen oxides (NO, NO2, NOx), carbon monoxide (CO), sulfur dioxide
(SO2), and volatile organic compounds (VOCs) like benzene and toluene have detrimental
effects on air quality. Poor air quality not only degrades the environment but also poses serious
health risks to the population, particularly those with pre-existing respiratory conditions like
asthma or chronic bronchitis. This is why the Air Quality Index (AQI), a metric used to assess
and report daily air quality levels, plays a critical role in public health management and
environmental policy-making.

Air pollution refers to the contamination of the atmosphere by harmful substances including
gases, particulate matter, chemicals, and biological molecules. These pollutants can come from
both natural sources, such as wildfires and volcanic eruptions, and human activities like vehicle
emissions, industrial processes, and the burning of fossil fuels. [1]

Air pollution is one of the serious issues all around the globe and can cause a variety of health
problems such as skin infections, eye diseases, throat infections, lung cancer, bronchitis
diseases, respiratory diseases, cardiovascular issues, exacerbation of asthma, etc. According to
WHO around 7 million people got affected with numerous diseases and reports of 1.3 million
deaths due to air pollution. Long-term exposure of air pollutants may increase the chances of
premature mortalities. Children might face developmental issues such as physiological and
cognitive. Pregnant women face developmental issues which includes low birth weight,
premature births, etc. In addition to that it also contributes to environmental degradation,
including acid rain, depletion of the ozone layer, global warming, introduces a serious threat to
plant, and also impacts our economy seriously. Huge financial investments are required to
mitigate the air pollution which leads to economic losses for the government and organizations.

[2]

India regularly sees AQI values exceeding 300 in many major cities, which indicates a
"hazardous™ level of pollution. For example, Delhi is often in the spotlight for its alarmingly
high AQI during the winter months, driven by a combination of vehicular emissions, industrial
discharges, and crop-burning activities in nearby states. In some instances, AQI readings in
Delhi have even surpassed 500, leading to public health emergencies. Studies suggest that long-
term exposure to high PM2.5 levels can reduce life expectancy, contribute to chronic illnesses
such as asthma and bronchitis, and increase the risk of heart attacks. In terms of specific
pollutant data, the average annual PM2.5 concentration in several Indian cities frequently
exceeds the World Health Organization (WHO) guideline of 10 pg/m?3 by several multiples.
Cities like Kolkata, Mumbai, and Chennai also experience high concentrations of other harmful
pollutants such as NO: and CO due to traffic congestion and industrial emissions. Furthermore,
there is an upward trend in ground-level ozone pollution, which exacerbates respiratory
problems, particularly in vulnerable populations like children and the elderly. [3]

AQI calculation

The Air Quality Index (AQI) is a numerical value that reflects the quality of air in a specific
area, providing a measure of pollution levels and their potential impact on human health. The
AQI is calculated based on the concentrations of key air pollutants such as particulate matter
(PM10 and PM2.5), ozone (Os), nitrogen dioxide (NO:), sulfur dioxide (SO:), carbon
monoxide (CO), and ammonia (NHs). Each of these pollutants has its own individual sub-index
value that contributes to the overall AQI. The AQI calculation for each pollutant follows a
linear interpolation method, using breakpoints that correspond to different concentration ranges
for each pollutant. These breakpoints are linked to AQI categories that represent different
health impact levels: "Good," "Satisfactory," "Moderate,” "Poor,” "Very Poor," and "Severe."
The formula used for calculating the AQI for a given pollutant is:

AQIp = ((IHi—ILo) /(CHI—CL0))*(Cp—CLo)*+lLo

Where, AQI, is the AQI for pollutant p, Cp is the actual concentration of pollutant p, Cxi and
CuLo are the upper and lower concentration limits for the AQI category in which Cy falls, I and
ILo are the corresponding AQI values for the upper and lower concentration breakpoints.

The final AQI value is determined by taking the maximum AQI among all pollutants being
monitored for a given time period. This ensures that the pollutant with the highest sub-index,
which poses the greatest health risk, dominates the overall AQI value for that location. For
example, if the AQI for PM2.5 is the highest among all pollutants in a city on a particular day,
this will dictate the overall AQI level and the associated health advisory. The index helps
communicate air quality to the public in a simple and standardized way, offering clear guidance
on whether the air is safe to breathe and what actions individuals should take to protect their
health.

The AQI includes six color-coded categories, each corresponding to a range of index values.
The higher the AQI value, the greater the level of air pollution and the greater the health
concern. For example, an AQI value of 50 or below represents good air quality, while an AQI
value over 300 represents hazardous air quality.

For each pollutant an AQI value of 100 generally corresponds to an ambient air concentration
that equals the level of the short-term national ambient air quality standard for protection of
public health. AQI values at or below 100 are generally thought of as satisfactory. When AQI
values are above 100, air quality is unhealthy: at first for certain sensitive groups of people,
then for everyone as AQI values get higher.

The AQI is divided into six categories. Each category corresponds to a different level of health
concern. Each category also has a specific color. The color makes it easy for people to quickly
determine whether air quality is reaching unhealthy levels in their communities. [4]

AQI Category, Pollutants and Health Breakpoints

AQI PM_ | PM, | NO, | O co SO, | NH, | Pb
Category | 24hr | 24br | 24-hr | Shr B | 24be | 24mr | 2DE
(Range) (mg/m)

Moderately | 101-250 | 61-90 | 81-180 | 101-168 = 2.1-10 | 51-380 401- | 1.1-2.0
polluted 800
(101-200)

Poor 251-350 | 91-120 | 181- | 169-208 | 10-17 | 381-800 | 801- | 2.1-3.0
(201-300) 280 1200

Fig 1.1. AQI categories for different pollutants

1.2 Problem Statement

Predicting AQI based on various pollutants such as PM2.5, PM10, CO, NO, NO2, and ozone
is a complex challenge due to the dynamic interaction between these pollutants, weather
conditions, and geographical factors. Accurate AQI prediction allows authorities to take
proactive steps to manage pollution levels and protect public health. The main goal of this
project is to develop machine learning models that can accurately predict AQI based on the
concentrations of various pollutants, thereby providing timely and actionable information.

1.3 Importance
Accurate AQI prediction holds immense importance in several domains:

Public Health: Timely AQI predictions enable individuals to take preventive
measures, such as avoiding outdoor activities during periods of high pollution. It also
helps healthcare providers to identify and address health issues related to air pollution
exposure.

Policy Making: Governments can use AQI predictions to develop and implement
effective air pollution control policies, such as vehicle emission standards, industrial
regulations, and urban planning strategies.

Environmental Awareness: AQI predictions can raise public awareness about air
pollution and its impacts, encouraging individuals to adopt sustainable practices and
support environmentally friendly initiatives.

2.0bjective
The main objective of this project is to build a machine learning model capable of accurately
predicting the Air Quality Index (AQI) based on the concentration of various pollutants,
including PM2.5, PM10, NO, NO2, NOx, CO, Ozone, SO2, and other factors such as wind
speed and direction. By doing so, the model can provide real-time or near real-time AQI
forecasts, which can be used to inform public health policies, individual precautions, and
environmental actions.
The project also aims to:

[]

Identify the most influential pollutants contributing to AQI levels.

Optimize different machine learning models, such as Decision Trees, Random Forests,
Gradient Boosting, and others, to achieve the best prediction accuracy.

Develop visualization tools to analyze and communicate model results and pollutant
trends.

2.1 Scope
The scope of this project is defined as follows:

Geographic Area: The model focuses on air quality data collected from specific
regions or cities. For this project, the dataset might cover a specific city (e.g., Kolkata)
or a broader area depending on available data.

Time Period: The dataset used includes air quality and pollutant data from January 1,
2015, to December 31, 2020. The model is trained on this time period to make
predictions for the following months.

Predictors: The main predictors (features) used in the model include various pollutants
(PM2.5, PM10, NO, NO2, NOx, CO, etc.), meteorological variables like wind speed
and direction, and time-related factors such as month or season.

2.2 Challenges
Several challenges were encountered during the development of this project:
1. Data Quality and Missing Values: Air pollution data often contains missing values

due to sensor malfunctions, downtime, or calibration errors. Imputing these missing
values effectively was critical for ensuring the accuracy of the model.
Multicollinearity: Some pollutants are strongly correlated with each other (e.g., NO,
NO2, and NOx), which can cause issues in model performance. It was necessary to
handle multicollinearity through feature engineering or by selecting the most relevant
features.

Seasonality and Temporal Trends: Air pollution levels can fluctuate significantly
based on seasonal changes, holidays, or local activities. Capturing these temporal trends
and seasonality factors is essential for making accurate predictions.

Complexity of Pollutant Interaction: Various pollutants interact with each other in
complex ways, influenced by weather conditions, geographical factors, and human
activity. Modeling these relationships requires careful selection of machine learning
algorithms.

Model Generalization: While the model can perform well on historical data, ensuring
that it generalizes to future or unseen data is a challenge, particularly when considering
evolving environmental policies and changes in pollutant sources.

2.3 Methodology

2.3.1. Experimental setup

The dataset utilized for the proposed model evaluation is the publicly available Air Quality
Data in India (2015-2020) from the Kaggle repository. It comprises air quality and air quality
index (AQI) data recorded at hourly and daily intervals across various stations in 26 major
cities in India. The dataset includes attributes such as date, month, year, PM2.5, PM10, NO,
NO2, NOx, NH3, CO, SO2, O3, Benzene, Toluene, AQI, and AQI_Bucket. The AQI_Bucket
classifies AQI into six categories: good, satisfactory, moderate, poor, very poor, and severe.

For the study, Delhi, Guwahati, and Thiruvananthapuram are selected from different
geographic regions of India. A daily timeframe was chosen for model experimentation.
Separate CSV files are being created for each of these cities. Most parameters are common
across the selected cities; however, in cases of discrepancies, certain parameters are entirely
omitted from the datasets. Additionally, AQI_Bucket is excluded from the new datasets, as the
model experimentation focused on a regression-based approach.

1. Preprocessing

The dataset used for the proposed model experimentation contained null values and outliers,
necessitating data cleaning. First, the null values are identified and analyzed, then replaced with
the mean values of their respective columns. However, columns with a significant number of
null values are entirely removed from the dataset. Outliers are first detected and addressed
using a quartile-based method that scaled the extreme values. After that the processed data was
once against analyzed

2. Feature selection, Independent and Dependent variables

The individual parameters within each dataset are correlated with one another through various
methods such as multiple plots, a correlation table, and a heat map generated from the
correlation table. Emphasis is placed on parameters that exhibited a certain desired level of
correlation, while those that did not meet this threshold are being removed from their respective
datasets. Each city's dataset displayed its own unique correlation patterns, so there is no strict
requirement to select the same parameters across all datasets. However, it is essential to note
that parameters like PM. s and PM1o are mandatory for all datasets used in the prediction model.

Following this, based on feature selection, the independent variables were determined
according to the specific dataset of each city, while the dependent variable remained the same
across all datasets, i.e., 'AQI".

The final parameters are once again compared after then once again compared with accordance
to their importance before splitting the test and train data. The difference here is that, all the
required parameters for predicting AQI, are now stored as independent variables and are
correlated against AQI in the form of horizontal bar-graph.

3.) Spiting train and test data

The training and testing datasets are splited using “sklearn” libraries, with 70% of the data
allocated for training.

4. Working with the model

The models used, are then imported from sklearn, Linear Regression, Lasso Regression, Ridge
Regression, Decision Tree (as regression model), Random Forest (as regression model), KNN
(as regression model), are being used as prediction model. Every model is first trained with the
train data and then the test data is implemented, each test and train data are scored with R?

scores. Mean score was used for scoring the prediction on the created variables in a cross
validated method, again using R? scores. Predicted AQI values are then plotted as a histogram,
also a scatter plot is plotted comparing predicted values and actual values, and lastly line plot
is plotted, again for comparison purpose.

Each model is hypertuned or optimised, irrespective of any display of overfitting, so to get
better results. Linear Regression is optmesed with Lasso and Ridge Regression, Decision Tree
and Random Forest is hypertuned with Grid Search CV and Randomized Search CV,
respectively. While KNN is hypertuned with different K-values.

5. Comparing Scores

R?, MAE, MSE, RMSE scores for all of the models (before and after hypertuning) are then
compared to each other, topic, shows the comparison below.

6. AQI calculator

A function is created taking the basis of the entire models used for prediction, which inputs all
the selected parameters and outputs the AQI value for each of the model, while the tagging the
model along with it.

def predict_aqi(modelz, model_names, input_data):
Predict AQI using multiple trained regression models and print predictions alongside model names.

Parameters:

- modelz: A list of trained regression models.

- model_names: A list of model names corresponding to each regression model.
- input_data: A numpy array or list of features for prediction.

Returns:
- predictions: A list of tuples containing the model name and predicted AQI value.

input_array = np.array(input_data).reshape(l, -1)
preds = []

for model, name in zip(modelz, model_names):
try:
pred = model.predict({input_array)
preds.append((name, pred[2]))
Store model name with prediction
except Exception as e:
print{f"Error with model {name}: {e}")
preds.append((name, None))
Append None for models that fail

Print model names with their predictions
for name, predicts in preds:

print(f"Model: {name}, Predicted AQI: {predicts}")

return preds

Fig.2.1. displays the function that inputs variables and calculate the AQI levels using the models
that have been trained with the datasets. This function holds true for all the datasets.

3.Dataset Overview
3.1 Dataset Source
The dataset used for this project likely originates from official government agencies,
environmental organizations, or air quality monitoring stations that continuously track
pollution levels across various cities. Common sources for such datasets include the Central
Pollution Control Board (CPCB) in India. These agencies regularly publish air quality data
based on readings from automated monitoring stations located across cities.
3.2 Features
The dataset consists of several important features, which include various air pollutants and
meteorological data that influence AQI levels. The key features are:
1. PM2.5: Fine particulate matter smaller than 2.5 micrometers, a major component of air
pollution that can penetrate the lungs and affect respiratory health.
2. PM10: Particulate matter smaller than 10 micrometers, which can cause throat irritation
and exacerbate lung conditions.
3. NO2 (Nitrogen Dioxide): A harmful gas primarily produced by vehicle emissions and
industrial activities.
4. NO: Nitric oxide, often produced during combustion, which can react to form NO2.
5. CO (Carbon Monoxide): A colorless, odorless gas that can be dangerous in high
concentrations, often emitted from cars and other combustion sources.
6. Ozone (O3): A reactive gas present in both the Earth's upper atmosphere (good 0zone)
and at ground level (bad ozone), which can cause respiratory problems.
7. Total NOx: A combined measure of nitrogen oxides (NO, NO2, NOx) that affect air
quality.
3.3 Target Variable
The target variable in this dataset is the AQI (Air Quality Index). The AQI provides a
simplified numerical measure to convey the overall quality of the air. Higher AQI values
indicate worse air quality, with values over 100 typically considered unhealthy.

3.4 Data Preprocessing
Several preprocessing steps were performed to prepare the dataset for machine learning:

1. Handling Missing Values: The dataset contained some missing values, likely due to
sensor malfunctions or data collection gaps. These missing values were imputed using
median values to avoid introducing bias into the model. Median imputation was chosen
as it is robust against outliers.

2. Feature Engineering: Related pollutant variables such as NO, NO2, and NOx were
combined into a new feature called Total NOx to reduce multicollinearity and better
represent the overall impact of nitrogen oxides.

3. Dropping Irrelevant Features: Some features, such as Xylene, were dropped because
they had no or insufficient data across the dataset.

4. Scaling: Since different pollutants are measured in different units, it was important to
scale the data to ensure all features contribute equally to the machine learning model.
Standardization (subtracting the mean and dividing by the standard deviation) or
MinMax scaling was applied.

5. Date and Time Processing: The date column was converted to a suitable datetime
format, and additional time-related features like the month or season were extracted to
capture temporal trends in air pollution.

4.Tools and Technologies

4.1 Programming Languages

Python: The primary programming language used for this project is Python due to its
extensive libraries and frameworks for data analysis, machine learning, and
visualization. Python's simplicity and readability make it an ideal choice for both
beginners and experienced data scientists.

4.2 Libraries/Frameworks

Pandas: A powerful library used for data manipulation and analysis. It provides data
structures such as DataFrames, which make it easy to handle and analyze structured
data efficiently.

NumPy: This library is used for numerical computations and provides support for large,
multi-dimensional arrays and matrices, along with a collection of mathematical
functions to operate on these arrays.

Scikit-learn: A key library for machine learning in Python. It provides a variety of
algorithms and tools for classification, regression, clustering, and model evaluation.
Scikit-learn is used for implementing machine learning models, including decision
trees, random forests, and gradient boosting.

Matplotlib: A widely used plotting library in Python that provides a flexible way to
create static, animated, and interactive visualizations. It is often used for creating basic
plots and figures.

Seaborn: Built on top of Matplotlib, Seaborn provides a high-level interface for
drawing attractive and informative statistical graphics. It simplifies the process of
creating complex visualizations, such as heatmaps and pair plots.

XGBoost: An optimized gradient boosting library designed to be highly efficient and
scalable. It is particularly useful for structured/tabular data and is known for its
performance in machine learning competitions.

4.3 ML Algorithms

Decision Trees: A simple yet powerful algorithm that uses a tree-like model of
decisions. Decision trees are interpretable and can handle both numerical and
categorical data.

Random Forests: An ensemble method that combines multiple decision trees to
improve prediction accuracy and control overfitting. Random forests are robust and
effective for a wide range of datasets.

Gradient Boosting: An iterative ensemble technique that builds trees one at a time,
with each new tree correcting errors made by the previous ones. It is highly effective
for regression and classification problems.

XGBoost: An advanced gradient boosting algorithm that optimizes the model
performance through techniques like regularization, which helps prevent overfitting.

4.4 Development Tools

Jupyter Notebooks: An open-source web application that allows for the creation and
sharing of documents that contain live code, equations, visualizations, and narrative
text. Jupyter Notebooks are particularly useful for data exploration, visualization, and
documentation of the analysis process.

S.implementation

5.1 Data Preprocessing
1. Handling Missing Values:

o The dataset contained missing values due to sensor malfunctions or gaps in data
collection. To handle these missing values, the median imputation method was
employed. This approach was chosen because the median is robust to outliers
and provides a central tendency measure that minimizes bias.

2. Outlier Detection:

o Outliers in the dataset were identified using visualizations such as box plots and
scatter plots. If necessary, outliers could be addressed by either removing them
or applying transformations (like logarithmic) to reduce their impact on the
model.

3. Feature Engineering:

o Combining pollutant features: The individual pollutant features—NO, NO2,
and NOX—were combined into a single feature called Total NOx. This
aggregation helps reduce multicollinearity and simplifies the model by focusing
on the overall contribution of nitrogen oxides to air quality.

4. Scaling:

o Since the features were measured on different scales, feature scaling was
applied to standardize the data. Techniques such as Min-Max scaling or
Standardization (Z-score normalization) were used to bring all features to a
similar range, enhancing model performance.

5.2 Train-Test Split
e The dataset was divided into training and testing sets using an 80-20 split. This means
that 80% of the data was used for training the model, while the remaining 20% was
reserved for testing. This approach is beneficial because it provides enough data for the
model to learn effectively while still having a separate dataset to evaluate its
performance. The test set serves as a safeguard against overfitting, ensuring that the
model generalizes well to unseen data.
5.3 Model Building
Multiple machine learning models were implemented to predict AQI based on pollutant levels:
1. Decision Tree:

o A straightforward algorithm that splits the data into branches based on feature

values. It’s interpretable but can easily overfit the training data.
2. Random Forest:

o An ensemble method that uses multiple decision trees to improve prediction
accuracy and robustness. Random Forests reduce overfitting by averaging
predictions from different trees.

3. Gradient Boosting:

o An ensemble technique that builds trees sequentially, where each tree corrects
errors from the previous one. This model tends to perform well for complex
datasets.

4. XGBoost:

o A powerful implementation of gradient boosting that optimizes for speed and
performance. It includes additional features like regularization, which helps
mitigate overfitting.

5.4 Parameter Tuning
e Hyperparameter optimization was performed using techniques like GridSearchCV and
RandomizedSearchCV.

o GridSearchCV involves exhaustively searching through a specified subset of
hyperparameters to find the best combination.

o RandomizedSearchCV samples a given number of candidates from a
parameter space, allowing for faster execution when compared to GridSearch.
This tuning process helps to improve model performance by identifying the
most suitable hyperparameters.

5.5 Cross-Validation

e K-Fold cross-validation was employed to assess model performance. This method
involves dividing the training dataset into K subsets (or folds). The model is trained on
K-1 folds and tested on the remaining fold. This process is repeated K times, with each
fold serving as the test set once. Cross-validation helps ensure that the model's
performance is consistent across different subsets of the data, reducing the likelihood
of overfitting and providing a more accurate estimate of model generalization to unseen
data.

6. Results and Discussion
6.1 Results

6.1.1 Fold Wise Best Model Performances across cities in comparison to Lagged Variables

Table 4. Delhi Fold Wise Model Performance for Linear Regression

Without Lagged Variables

With Lagged Variables

Fold RMSE MSE MAE R2 Score RMSE MSE MAE R2 Score
| 51.86 2689 40.64 77.53 38.89 1512 29.56 89.95
2 73.54 5409 60.81 76.80 40.40 1632 30.24 88.42
3 38.11 1452 28.10 88.73 35.77 1279 27.23 88.97
4 36.98 1367 30.18 89.06 44.60 1989 30.98 86.29
5 38.71 1498 3248 89.66 35.31 1247 26.56 91.91
Average 47.84 2483 38.44 84.36 39.00 1532 28.91 89.11

Overall Scatter Plot of Actual vs Predicted AQI over Time

® Actual AQI
® Predicted AQI

Figure 5: Scatter Plot of Actual vs Predicted AQI
by Linear Regression.

¥ ‘8ot °
- o

-

Overall Scatter Plot of Actual vs Predicted AQI over Time

® Actual AQI
o Predicted AQI

2016

1% s

1 oo:ﬂo." °

Figure 6: Scatter Plot of Actual vs
Predicted AQI by GradientBoosting

Regressor s
Table 5. Delhi Fold Wise Model 3 . . N . .
Performance for GradientBoosting o o MR o8 oz
Regressor
Without Lagged Variables With Lagged Variables
Fold RMSE MSE MAE R? Score RMSE MSE MAE R? Score
| 50.95 2595.60 39.60 78.32% 29.96 897.73 22.17 94.04%

2 61.84 3824.13 47.77 83.60% 28.61 818.80 20.11 94.20%
3 37.42 1400.20 28.59 89.14% 28.48 811.01 20.01 93.02%
4 32.18 1035.67 23.90 91.72% 29.76 885.63 20.71 93.90%
5 26.89 72326 20.70 95.01% 24.75 612.44 17.20 96.03%
Average 41.86 1915.77 32.11 87.56% 28.31 805.12 20.04 94.24%
Average Feature Impartance across Folds Average Feature Importance across Folds
#1110 a1
PM2.5 lagl
w NOx_lag1
o lagL
502_lag1

Average Fealure Importance

Average Feature Importance

Figure 7: (Left) Feature Importance from GBR without Lagged Variables. (Right) Feature Importance from GBR with Lagged Variables

Table 6. Guwahati Fold Wise Model Performance for GradientBoosting Regressor
Without Lagged Variables

With Lagged Variables

Fold RMSE MSE MAE R2 Score RMSE MSE MAE R? Score
| 123.10 15154.40 38.64 36.80% 23.87 570.01 18.31 63.33%

2 104.85 10993.90 32.34 22.08% 24.24 587.69 19.89 43.85%

3 108.78 11833.46 55.41 52.29% 48.00 2304.45 28.63 62.24%
4 16.14 260.57 11.43 -0.73% 9.16 83.96 6.67 67.54%
5 48.27 233048 27.92 52.62% 36.47 1329.79 19.82 72.97%

6 50.11 2511.03 40.09 55.90% 31.65 1001.98 25.39 82.40%
7 36.86 1358.44 27.59 62.17% 31.20 973.16 21.76 72.90%

8 3831 1467.90 30.71 73.42% 33.06 1092.66 2431 80.21%
9 28.14 791.61 1851 82.87% 17.82 317.73 12.51 93.12%
10 9.70 94.02 6.86 50.71% 8.25 68.07 6.51 64.31%
Average 56.43 4679.58 28.95 48.81% 26.37 832.95 18.38 70.29%

GBR RMSE Across Folds (Guwahati: With and Without Lagged Variables)

120+

a0

20

=8~ without Lagged varables
—#— Viith Lagaed Vanables

Figure
8:
Metric
scores
of

0

GER MSE Across Folds {Guwahati: With and Without Lagged Variables)

4000

12000

10000

—+— without Lagged Vanables
—8— with Lagged Variatles

Guwabhati visualized across folds

GBR MAE Across Folds (Cuwahati: With and Without Lagged Variakblas) GBR R Score Across Folds (Guwahali: With and Without Leaged Variables)

—+— without Lagged Variables —+— Without Lagged variables
—8— With Laped Variables —e— With Lapged Variabins

2]

iw Table 7. ¢ "
104
2 4 [B pi z 4 G L] 10
Hyderabad Fold Wise Model Performance for GradientBoosting Regressor
Without Lagged Variables With Lagged Variables
Fold RMSE MSE MAE R? Score RMSE MSE MAE R? Score
1 58.01 3365.64 42.12 22.14% 31.83 1013.30 19.92 76.56%
2 26.94 725.99 20.37 56.32% 27.65 764.39 21.19 54.01%
3 17.90 32043 14.27 72.98% 13.98 195.50 11.16 83.52%
4 12.24 149.83 9.59 87.14% 835 69.66 6.67 94.02%
5 14.24 202.78 12.43 84.15% 8.83 78.00 7.00 93.90%
Average 25.87 952.93 19.76 64.55% 18.13 424.17 13.19 80.40%
Figure 9: (Left) rueem
Feature
Importance from
GBR without
Lagged Variables. ~ mots
o | (Right) ~ Feature =~ ™
Importance from
2 GBR with Lagged
ol Variables
: : Table 8. Kolkata _
Y verage reatine wmpotance o ° Fold Wise Model " - [o
Performance for Ridge Regression
Without Lagged Variables With Lagged Variables
Fold RMSE MSE MAE R? Score RMSE MSE MAE R? Score
| 13.92 193.68 9.85 89.51% 13.31 177.06 9.60 90.41%
2 88.34 7803.25 75.85 19.18% 81.50 6642.39 68.16 31.21%
3 36.23 1312.88 30.26 83.59% 27.39 750.07 22.53 90.62%
4 26.58 706.72 22.73 65.16% 21.68 470.12 18.23 76.82%
5 14.74 217.17 10.00 24.40% 10.18 103.56 8.0l 63.95%
6 8.00 64.01 6.16 57.93% 5.33 28.40 428 81.34%
7 26.84 720.23 20.06 86.84% 24.27 589.16 15.72 89.24%
8 25.84 667.72 19.97 77.73% 21.62 467.21 16.99 84.42%
9 15.92 253.30 11.50 91.36% 11.69 136.62 823 95.34%
10 5.18 26.80 4.12 77.65% 6.74 45.45 5.18 62.11%

Average 26.16 1196.58 21.05 67.34% 22.37 941.00 17.69 76.54%

R? Score

_ 3004

Overall Scatter Plot of Actual vs Predicted AQI over Time

500 -

400 +

2004

° ® Actual AQI
@ Predicted AQI
o
-: °
"y
o °% o..’. .
oo
NIRRT :
.... 3 .”.. (] ® .
8 “.”. °
° J’o ® & [e o [
1ty . 28, o'f‘ '3
it & Pl
o: fo' ® H j"’ H ".
~r ' f3 : ‘. ';s"
100 4 ® ° ®oe ®' L} e .
'} tk' o °©
Wit RGN
. H
201810 2019-01 201804 201907 201910 2020-01 202004 2020-07

Date

Figure 10: Scatter Plot of Actual vs Predicted AQI by Ridge Regression

Table 9. Visakhapatnam Fold Wise Model Performance for GradientBoosting Regressor
Without Lagged Variables

With Lagged Variables

80

707

Fold RMSE MSE MAE R2 Score RMSE MSE MAE R2 Score
| 41.84 1750.45 30.16 50.38% 16.95 287.31 11.35 92.54%
2 17.07 291.45 12.82 57.48% 19.03 362.13 11.88 88.43%
3 25.94 672.99 17.90 88.90% 15.57 242.32 10.47 89.69%
4 24.05 578.18 14.76 67.51% 14.03 196.93 10.37 93.60%
5 16.90 285.45 12.14 81.65% 19.89 395.45 11.85 83.16%
Average 25.16 715.70 17.56 69.18% 17.09 296.83 11.19 89.49%
6.1.2 Overall model performances across cities
Table 10. R2 scores across all models and all cities
Without Lagged Variables With Lagged Variables
Model Delhi Guwahati Hyderabad ~ Visakhapatnam Kolkata Delhi Guwabhati Hyderabad ~ Visakhapatnam Kolkata
Linear 84.36% 40.11% 71.52% 69.36% 67.25% 89.11% 39.83% 74.18% 86.02% 76.09%
Ridge 84.36% 44.67% 71.46% 69.86% 67.34% 89.10% 28.36% 74.66% 86.03% 76.54%
Lasso 84.36% 41.23% 71.35% 69.53% 67.12% 89.11% 32.69% 74.34% 86.11% 76.26%
DTR 82.45% 37.80% 59.21% 58.42% 55.05% 88.36% 42.59% 70.26% 81.90% 53.93%
XGB 85.71% 35.50% 69.91% 67.56% 58.85% 94.01% 64.51% 79.10% 89.44% 69.52%
GBR 87.56% 48.81% 64.55% 69.18% 62.08% 94.24% 70.29% 80.40% 89.49% 69.50%
Average 84.80% 41.35% 68.00% 67.32% 62.95% 90.66% 46.38% 75.49% 86.50% 70.31%
Average R? Scores With and Without Lagged Variables
W With Lagged Variables
Without Lagged Variables
B sees -
- Figure 11. Increase in R? score due to Lagged

60

50 1

40 A

301

201

10 4

T
Linear

Ridge

T
Lasso

DTR
Model

XGB

GBR

Variables across all models

Model Performance (Average R?) Across All Cities

Figure 12. R? score visualized across Models with . —®— Without Lagged Variables
and without Lagged Variables With Lagged Variables
751
g
=]
A
& 70 4
o
o
g
T
z
651
601
Linear Ridge Lasso DTR XGB GBR

Model

6.2 Discussions

6.2.1 Delhi

The Linear Regression model improved significantly with the inclusion of lagged variables.
The average R2 score increased from 84.36% (without lagged) to 89.11% (with lagged). The
RMSE and MAE metrics also improved, showing better predictive performance with lagged
variables. The GradientBoosting Regressor (GBR) achieved an impressive improvement, with
the Rz increasing from 87.56% (without lagged) to 94.24% (with lagged). This shows that GBR
effectively learned from the lagged features and performed robustly in Delhi.

562.2 Guwabhati

The overall performance across models was lower without lagged variables, but lagged inputs
provided substantial improvements. For GBR, the R? increased from 48.81% to 70.29% when
lagged variables were included. This highlights the importance of considering temporal
features in AQI prediction for Guwahati, which greatly boosted the model’s predictive
capability.

6.2.3 Hyderabad

Similar improvements were observed in Hyderabad, with GBR showing a marked increase in
R2 from 64.55% (without lagged) to 80.40% (with lagged). Lagged features clearly helped the
models better capture air quality variations in this city.

6.2.4 Kolkata

There was an overall improvement in model performance with lagged variables for all models,
with GBR showing an R increase from 62.08% to 69.50%. This suggests that including lagged
features helps models account for the temporal dependencies in AQI better in Kolkata.

6.2.5 Visakhapatnam

GBR exhibited improved performance here as well, with an R?2 increasing from 69.18% to
89.49% due to lagged variables, making it the best-performing model for this city. The addition
of lagged variables in Visakhapatnam resulted in more accurate predictions across all models,
especially for GBR and XGB.

6.2.6 R2 Score Comparison

Across all models and cities, the inclusion of lagged variables consistently improved the R?
scores. The Gradient Boosting Regressor (GBR) emerged as the best-performing model across
most cities. For example, in Delhi, it achieved an R? score of 94.24% with lagged variables.
XGBoost (XGB) also showed good performance, particularly in Hyderabad and
Visakhapatnam, where its R? scores increased to 79.10% and 89.44%, respectively, when
lagged variables were included.

6.2.7 Model Average Performance

The average R2 score across all cities for all models improved from 84.80% (without lagged)
to 90.66% (with lagged), showing that the inclusion of lagged variables led to a significant
overall improvement in AQI prediction. GBR consistently performed better than other models,
indicating its effectiveness in capturing temporal dependencies and non-linear relationships in
the data.

6.2.8 City-Specific Observations

Delhi and Visakhapatnam had the highest gains in R2 score with the inclusion of lagged
variables, particularly for advanced models like GBR and XGB. Guwahati and Hyderabad saw
notable improvements, though their R2 scores remained lower than Delhi and Visakhapatnam,
suggesting the models may have struggled with more complex or noisier data in these cities.
However, lagged variables did contribute to improved predictions across all cities.

7.Conclusion and Future Work

This research presents an alternative and robust approach to Air Quality Index (AQI) prediction
by incorporating temporal dependencies through the inclusion of lagged pollutant variables.
Unlike traditional models that often ignore the time sequence in AQI data, our study
emphasizes the importance of respecting the temporal nature of air quality data. Through the
use of a Nested Cross-Validation framework, this paper ensures rigorous and unbiased
evaluation of different models, preventing data leakage and overfitting, which are common
issues in time-series forecasting.

The introduction of lagged variables (e.g., PM2.5 lagl, PM10_lagl) significantly improved
the predictive power of the models across all cities, as demonstrated by the consistent increase
in R2 scores. Notably, models like Gradient Boosting Regressor (GBR) and XGBoost (XGB)
capitalized on the temporal information, yielding better performance, with GBR achieving the
highest R? score of 94.24% for Delhi. The results underscore that incorporating lagged
variables better captures the dynamic nature of pollutants and their effect on AQI, making the
predictions more reflective of real-world conditions.

Moreover, the study utilized a TimeSeriesSplit method within the cross-validation framework,
ensuring that the models trained on past data were evaluated on future unseen data, replicating
real-world applications more effectively. The nested hyperparameter tuning, carried out within
this time-series structure, further enhanced model performance by optimizing key parameters
in a systematic and unbiased manner.

In comparison to conventional approaches that often jumble rows or ignore temporal structures,
our model is more rigorous and applicable to real-world AQI forecasting, where time
dependencies are critical. The integration of lagged features and time-respecting model
evaluations ensures that this method not only yields higher predictive accuracy but also
enhances the model's generalizability for real-world applications in urban air quality
monitoring and policymaking.

Future work can extend this approach by incorporating additional temporal features, such as
weather data or long-term seasonal effects, to further improve model performance and
reliability. The field can also explore how exogenous factors—such as economic, social, and
quality-of-life indicators—might influence air quality. The aim could be to investigate any
correlations that exist which could lead to deeper insights and recommendations for policy
interventions. Alongside this exploring Hybrid Models that combine traditional forecasting
methods with non-linear techniques such as decision trees and neural networks could also be
employed with the goal of capturing any unexplained variance in the residuals that may not
have been addressed by the initial forecasting models. The use of advanced ensemble methods
or deep learning architectures in a similar framework could also push the boundaries of AQI
prediction accuracy. Hence, the author believes there remains a lot of work to be discovered in
this sub-field that is at the intersection of Air Quality and Machine Learning.

References
1. Seinfeld, J. H., & Pandis, S. N. (2006). Atmospheric Chemistry and Physics: From
Air Pollution to Climate Change (2nd ed.). Wiley-Interscience.

2. Natarajan, S.K., Shanmurthy, P., Arockiam, D. et al. Optimized machine learning
model for air quality index prediction in major cities in India. Sci Rep 14, 6795
(2024).

3. Guttikunda et al., 2019: "Air pollution in Indian cities: Short- and long-term exposure
health impacts".

4. CPCB (Central Pollution Control Board), 2014: "National Air Quality Index".

5. Prediction of Air Quality Index Using Machine Learning Techniques: A Comparative
Analysis; https://doi.org/10.1155/2023/4916267

6. https://www.kaggle.com/code/rohanrao/calculating-agi-air-quality-index-tutorial

7. https://www.kagqgle.com/datasets/rohanrao/air-quality-data-in-india

8. Machine learning-based prediction of air quality index and air quality grade: a
comparative analysis; https://doi.org/10.1007/s13762-023-05016-2

9. Optimized machine learning model for air quality index prediction in major cities in
India;
https://doi.org/10.1038/s41598-024-54807-1

10. Time series forecasting using a hybrid ARIMA and neural network model by G. Peter
Zhang.

https://doi.org/10.1155/2023/4916267
https://www.kaggle.com/code/rohanrao/calculating-aqi-air-quality-index-tutorial
https://www.kaggle.com/datasets/rohanrao/air-quality-data-in-india
https://doi.org/10.1007/s13762-023-05016-2
https://doi.org/10.1038/s41598-024-54807-1

11. https://clip.cpcbh.gov.in/index.php/faqg/

9.Apendex1
Code and Output:

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

import seaborn as sns

import datetime

df = pd.read_csv(r"C:\Users\skuma\.ipynb_checkpoints\city_day.csv™)
df.info()

Remove duplicate rows
df_cleaned = df.drop_duplicates()
df_cleaned

Remove rows with any null values
df_cleaned = df.dropna()
df _cleaned

df.columns

df.head()
df.sort_index()

df.describe().T

Show null values in the DataFrame
null values = df.isnull()
print(null_values)

Count the number of null values in each column
null_counts = df.isnull().sum()
print(null_counts)

https://clip.cpcb.gov.in/index.php/faq/

import numpy as np # Linear algebra
import pandas as pd # data processing, CSV file I/0 (e.g. pd.read_csv)
import matplotlib.pyplot as plt
import seaborn as sns

import datetime

from warnings import filterwarnings
filterwarnings('ignore')

Input data Files are available in the read-only

../input/" directory

For example, running this (by clicking run or pressing Shift:Enter) will List all files under the input directory

import os

for dirname,

for filename in filenames:
print(os.path.join(dirname, filename))
df_city day = pd.read_csv(r”C:\Users\skuma\.ipynb_checkpoints\city day.csv")

df_city_day.head()

City Date PM2.5

0 Ahmedabad 01-01-2018 8446

~n

B ow

Ahmedabad 02-01-2018 7651
Ahmedabad 03-01-2018 63.88
Ahmedabad 04-01-2018 81.10

Ahmedabad 05-01-2018 73.61

df_city_day.shape

(4755, 16)

¢f_city_day.info()

PM10 NO

NaN 9.26

NaN 13.87

NaN 19.42

NaN 25.96

<class *pandas.core.frame. Datarrame’ >
mangeTndex: 4755 entries, to 4754
Data columns (total 16 columns):

14
15

men

dF ¢

column Non-null count

4755 non-null
4755 non-null

PM2.5 4548 non-null

PM12 3523 non-null

NO 4681 non-null

no2 4688 non-null floates
Hox 4718 non-null fleates
NH3 3784 non-null floates
co 4706 non-null fleates
s02 45611 non-null floates
03 4586 non-null fleates
Benzene 4397 non-null floats4
Toluene 4387 non-null floats4
xylene 2153 non-null floates
AQL 4588 non-null floates

AQI_Bucket 4538 non-null object
dtypes: floatsa(13), object(z)

Ory usage: 584.5+ KE
city_day.describe().T

count mean

PM2.5 4648.0 53392136

PM10 33330 111.223170

NO 4881.0 16.861431
NO2 46800 39939248
NOx 47100 39774573
NH3 37540 26104313

€O 4706.0 5.569768
SO02 4611.0 20.676276

03 43860 39512610

Benzene 4357.0 4494287

Tol

uene 4397.0 14407763

Xylene 2153.0 3554617

AQl 45880 195136053

std min
35850812 2.00
64.841549 0.21
20471042 040

32811022 051

33723387 000

23448026 0.1

6905 0.00

27.904089 0.97

21.043433 038

6825664 0.00

19.097706 0.00

5250683 0.00

216783199 23.00

87.62

76.69

69.32

109.07
173.08

25%
29.8200
65.0900

6.0100
183800
18.5100
11.4100

0.6500

7.0900
23.9025

0.7400

3.0400

11300

82.0000

NOx

48.40

4432

44.16

67.15
103.80

50%
45475
101.540

10.040

116,000

NH3

co S02

NaN 7.58 10236

NaN 9.26 10346

NaN 13.87 7030

NaN 1942 9330

NaN 2596 9386

75%

66.9700

142.0600

18.3100

487825

46.5700

31.8100

1.2700

17.2750

51.5800

48000

18.9700

42800

202.2500

max

31135

586.27

197.73

292.02

298310

219.26

134.85

186.08

16243

115.14

371.65

109.23

2049.00

_, filenames in os.walk(r"C:\Users\skuma\.ipynb_checkpoints\city_day.csv"):

03 Benzene Toluene

69.02

93.51

105.33

65.69
36.51

14.48

14.29

1277

19.56
17.69

45.60

61.83

60.99

7246

6148

Xylene

748
9.50
11.29

993

AQl
2780
256.0
3000
5320

5340

AQI_Bucket
Poor

Poar

Poar

Severe

Severe

This function takes a DotaFrame as o parameter and returns a table showing the number of null values in this DataFrame and the percemtage of these null values in the total values.def bos_deger goster(df):
shon_null_value{df):

mis_val = df.isnull().sum()

miss_val_percent= 18@ * df.isna().sum{)/ len(df) # Calculates the percentoge of blank values in each column out of the total values. We multiply by 188 to express it as @ percentage.

mis_val_table = pd.concat([mis_val, miss_val percent], axis=1)# concatenates the number and percentage of null values into a new DataFrame.

mis_val_table_ren_columns = mis_val_table.rename(columns = {8 : 'Missing values', 1 : '¥% of Total values'})

return mis_val_table_ren_columns # OataFrame i déndirir.

a
"
&

shon_null_value(df_city_day)

Missing Values % of Total Values

City 0 0.000000
Date (1] 0.000000

PM2.5 107 2250263
PM10 1222 25.699264

NO 4 1556257

NO2 75 1577287

NOx 45 0948372

NH3 o 20420610

co 49 1.030494

502 144 3.028391

03 169 3554154
Benzene 358 7.528917
Toluene 338 7.528917
Xylene 2602 54721348

Al 167 3512093
AQI_Bucket 167 3512093

df_city day['Date’] = pd.to_datetime(df city_day['Date'], format="3d-Im-%v')
df city day = df_city day.sort values(by = 'Date')

df_city_day['pate’].min() , df_city_day["Date'].max()

(Timestamp('2e18-@1-81 o

0:08'), Timestamp('2020-07-01 €@

df_city_day.columns

Tndex(['City’, 'Date’, 'PM2.S', 'PM18', 'NO', 'MD2', 'NOX', 'WH3', 'C0', 's02',
‘03", ‘Benzene', 'Toluene®, "Xyleme', 'AQI', 'AQI_Bucket'l],
dtype="object')

This function takes a DotaFrame as a parameter and identifies outliers for mumeric colums in the DataFrame. It replaces these outliers with the corresponding quartile values (01 or @3). outliers are identified using the interquartile range (IgR).
def replace_outliers with quartiles(df):

for column in df_city_day.select_dtypes(include=[‘nusber*]).columns: # Used to cycle through oLl numeric colums in the Dataframe.
Q1 = df_city_day[column].quantile(e.25)
Q2 - df_city_day[column].quantile(e.75)

R =03 - @
To identify outliers, Lower and upper Limits are caleulated and volues outside these Limits are considered outliers
1

2+ 1.5 % IR
For each column, we identify outliers and replace them with Q1 or Q3. We db this using o Lambdo function. If the value is Less thon the Lower bound, it is replaced with Q1. If 1t is greater than the upper bound, it is replaced with Q3. In the Last case, the value is mot changed and
4f_city_daylcolum] = df_city_day{column].applyC

la x: QL if x < lower_bound else (@2 if x > upper_bound else x}

)
return of_city day

df_city_day = replace_outliers_with_quartiles(df_city_day)
P >

df_city_day.describe().T

count mean min 25% 50% 5% max sta
Date 4755 2010.04-20 10:28:41640378368 2018-01-01 03:00:00 2018-08-1500:00:00 2019-05-1100:00:00 2019-12-16 000000 2020-07-07 000000 NaN
PM25 46480 29180962 20 2982 45.475 66.97 12243 2509113
PM10 35330 105247832 021 €5.09 101.54 14206 25704 51708117
NO 46810 12026753 04 601 10.04 1831 3674 7795707
NO2 46500 34717444 051 1838 3062 4BTTHES 9435 1927415
NOx 47100 32809849 00 1951 2928 265475 §7.15 16868454
NH3 37840 21500807 018 1141 194 3178 €22 13142773
@ 47060 0596733 00 065 087 127 22 0358563
s02 46110 11624383 097 708 1089 172725 3230 5811881
03 45860 36520981 038 235025 36755 5159 9305 18800295
Benzene 4397.0 2873806 00 o078 246 49 144 2350867
Toluene 4397.0 11368185 00 304 a19 1897 4271 10396442
Xylene 21530 2867032 00 113 24 428 870 2085384

AQl 45850 137864701 230 820 1160 202.0625 3820 72280916

df=df_city_day.drop{columns=['City"1}

import matplotlib.pyplot as plt
import seaborn as sns

Select only numeric columns from the dataframe
numeric_df = df.select_dtypes(include=['floates', 'intes’]})

Plot the heatmap for correlations between numeric columns
plt.figure(figsize=(12, 8))

sns.heatmap(numeric_df.corr(), annot=True, cmap='coolwarm'}
plt.title("cerrelation Heatmap")

plt.show()

Caorrelation Heatmap 0

PM2.5 038 052 045 02 049 032 028 02 03 042
PM10 047 037 028 024 027 031

NO 051 037 031 042 029 047 o
NOZ2 054 046 013 052 08 05 064

- 086

NOx 045 048 051 034 042 03 05

NH3 | 02 016 023 017
=04

CO 049 047 051 0.61

soz 032 037 037 0.54
-0z

03 028 028 gk 027

Benzene 02 024 031 035
Toluene 03 027 042 053 0.0

Xylene 042 031 029 01 039
0.29 -02

AQl - 047 064 051 017 061 054 027 035 053

PM25 PM10 NO NO2 NOx NH3 co S02 03 BenzeneToluene Xylene AQI

#The most important variables affecting the AQT value appear to be PM2.5, PM18, €O and NOx.
#e will make predictions based on datoc above 8.25

df_city_day=df_city day.drop(columns=["Xylene', 'Benzene®,’'03']}
#we remove the Xyleme, Benzene, 03 columns from df city day.

df_city_day.head(2)

Gity Date PM2.5 PM10 NO NOZ NOx NH3 CO 502 Toluene AQI
[} Anmedabad 2018-01-01 8446 MaN 758 8762 4840 MNaN 127 17.27% 1897 2780

3842 Visakhapatnam 2018-01-01 5973 99.04 1.73 2369 1389 1168 095 5750 367 1310

df_full=df city day[df_city day[’AQI"].notna()]

import pandas as pd

convert the 'Date’ column to dotetime format
df_full['Date'] = pd.to_datetime(df_full['Date'])

Now you can use the .dt accessor to extract the year
df_full['vear'] = df_full['Date’].dt.year

Display the first few rows to check
df_full.head()

[1247]: ity Date PM2.5 PM10 NO NO2Z NOx NH3 €O 502 Toluene AQl Year
o Ahmedabad 2018-01-01 5446 MNaM 758 87.62 4840 MNaN 127 17.275 1897 2780 2018

3842 Visakhapatnam 2018-01-01 5973 9904 1.73 23.69 13.89 11.68 095 5.750 367 131.0 2018

2115 Jaipur 2018-01-01 8233 17865 933 4334 3065 2353 000 9550 452 2210 2018

1202 Chennai 2018-01-01 5116 MNaN 839 1363 1172 31.81 003 6.000 297 890 208

3843 Visakhapatnam 2018-01-02 6422 10657 1.69 2836 1624 11.86 1.02 9.340 360 1250 2018

df_full.head(2}

Gty Date PM2.5 PM10 NO NO2Z NOx NH3I CO 502 Toluene AQI Year
L] Ahmedabad Z2018-01-01 8446 NaN 738 8762 4840 MNaN 127 17275 1897 2780 2018

3842 \Visakhapatnam 2018-01-01 5973 9904 173 2369 1389 11.68 095 5750 367 1310 2018

plt.title(" AQL per Year')
sns.barplot(x="vear",y="401" ,data=df_full};

AQI per Year

160
140
120

100

g @

2018 2019 2020
Year

import pandas as pd
import matplotlib.pyplot as plt

Convert the 'Date' column to datetime format
df_city day['Date"] = pd.to_datetime(df_city day['Date'], errors="coerce')

Extract the month {convert to period format for monthly aggregation)
df_city_day["month®] = df_city_day["pate’].dt.to_period(*m"})

get the List of numerical columns
numerical_cols = df_city day.select dtypes{include="'number"}.columns.tolist()

Group by 'Month' and calculate the mean for each numerical column
monthly data = df_city day.groupby('Month®)[numerical_cels].mean()

Plot the dota
plt.figure(figsize={14, &), dpi-38a)
for col in numerical_cols:
plt.plot{menthly data.index.astype(str)}, monthly_data[col], label=col)

plt.xlabel("Month") # “Months™

plt.ylabel("Average value') # "dverage Value”

plt.title("Monthly Averages of variables') # "Monthly Averages of Variobles™
plt.legend()

plt.grid(True}

plt.xticks{rotation=45)

plt.tight_layout({}

plt.show(}

Monthly Averages of Variables

PM2.5
PM10
NO
NO2
NOx
NH3
[ee]
802
Toluene
AQl

200

150

100

Average Value

50

699 ééﬂ 49? ﬁfy Qé? 45? 4§§ 4§§ $§9 pr ¢§b Qf@ §§§ §§9 éﬁﬁ éfy ng (9? <9§ é£§ Qja (99 Qgé éfg’¢§§ $§§’¢§9 ﬁéy iiF ig? ¢§§
L I S S S S NS S S S S S S S S
Month

‘14667: df_city day['Month'] = df_city day['Date'].dt.to_period{'M")
df_city day['Year'] = df_city_day['Date’].dt.year

monthly_aqi = df_city_day.groupby('Month®)["AQL"].mean(}

annual_agi_mean = df_city_day.groupby(Year')['AQI"].mean()

plt.figure(figsize=(14, 8), dpi=308)

plt.plot({monthly_agi.index.astype(str), monthly_agi, label="Monthly AQI Average', color="blue')
plt.axhlinef{y=annual_agi_mean.mean(), color="red’, linestyle="--', label='Annual AQI Average')

plt.xlabel(Month')

plt.ylabel{ AQI")

plt.title('Monthly and Annual Average AQI")
plt.legend()

plt.grid(True)

plt.xticks{rotation=45)

plt.tight_layvout()

plt.show()}

Monthly and Annual Average AQI

—— Monthly AQI Average
=== Annual AQI Average

200

180

160

9 140

120

g & PP F S PPN S PP F P S PP DS PP PP P D
R R A A S S A A S A A I G AT A it
PR PP PP P L S S I N S

Month

cols = ['AQI', "PM2.5', 'PM18', 'CO', 'NO', 'NOZ']

cmap = plt.get cmap('Spectral’')
color = [cmap(i} for i in np.linspace(e, 1, 8)]
explode = [@.2, @, @, @, @, 8]

fig, axes = plt.subplots({nrows=2, ncols=3, figsize=(15, &), dpi=38@)
axes = axes.flatten()

for ax, col in zip{axes, cols):
Group the cities and select the 8 cities with the highest total
X = df_city_day.groupby('city")}[cel].sum().sort_values(ascending=False)
X = X.reset_index{'city")

top_cities = x[:8]
sizes = top_cities[col].values
labels = top_cities['city'].telist{}

Posta grafigi olustur

wedges, texts, autotexts = ax.pie(sizes, shadow=True, auvtopct="H1.1fEX',
colors=color, explede-explode,
wedgeprops={'edgecclor': "black', 'linewidth": e.3},
labels=1labels)

for text in texts:
text.set_fontsize(s)

for autctext in autotexts:
autotext.set_fontsize(s)

ax.set_title(f'{col}")

for i1 in range(len{cels), len{axes}}):
fig.delaxes{axes[i])

plt.tight layout()
plt. show()

AQl PM2.5

Ahmedabad

m

Visakhapatnd

Visakhapaina

co NO NO2

Ahmedabad Ahmedabad
Ahmedabad

Jaipur

Visakhapatnam

Visakhapatna

[1472]: fig, axes = plt.subplots{1, 3, figsize=(15, 18), sharey=True)

sns.barplot({ax=axes[8], y="'City', x="AQI", data=df_city day, palette="Greens d')
axes[@].set_title("AQI Lewels')

sns.barplot(ax=axes[1], y="'City"', x="PM2.5", data=df city day, palette='Purples d'}
axes[1].set_title("PM2.5 Levels'}

sns.barplot(ax-axes[2], y='City', x="C0", data=df_city _day, palette="Blues_d')
axes[2].set title("CO Levels')

plt.tight_layout()}
plt.show(})

City

PMZ.5 Levels

Ahmedabad

Vigakhapatnam

o 50 100 150 00 o 10]

DATA MODELING

sklearn.linear_model import LinearRegression, Ridge, Lasso, Elastichet, SGDRegressor
sklearn.metrics import r2_scere

sklearn.ensemble import GradientBoostingRegressor

sklearn.svm import SVR

sklearn.tree import DecisionTreeRegressor, plot_tree

sklearn.ensemble import RandemForestRegressor

e combined the numeric aond one-hot encoded columns of the training, validotion and test dotosets.
X_train = train_inputs[numeric_cels + enceded_cols]

X_val = val_inputs[numeric_cols + encoded_cols]

X_test = test_inputs[numeric_cols + encoded_cols]

We mode o prediction and filled the predictions with the average of the AQI column
def guess_mean{inputs):
return np.full{len{inputs), df_full.AQI.mean{))

guess_mean_train_r2_score=r2_score(guess_mean(X_train), train_target)

print("The error was calculated by assigning average values to the prediction train_r2score: ", guess_mean_train_r2_score)
guess_mean_val_r2_score=r2_score(guess_mean(¥_val), val_target)

print("The error was calculated by assigning average values to the prediction val_r2score : ", guess_mean_val_r2_score)
guess_mean_test_r2_score=r2_score(guess_mean(X_test), test_target)

print("The error was calculated by assigning average values to the prediction test_r2score: ", guess_mean_test_r2_score)

The errcr was calculated by assigning average values teo the prediction train_ra2score: -5.493738643@2651e+3@
The errcr was calculated by assigning average values to the prediction val_r2score @ -6.356336594915273e+38
The errcr was calculated by assigning average values to the prediction test r2score: -6.35551982784852e+30

We mode o prediction and filled the predictions with rondom value between the Lowest and highest values of AQT column.
def guess_random(inputs):

lo, hi = df_full.AQI.min(), df_full.AQI.max()

return np.random.random{len(inputs)} * (hi - lo) + lo

guess_random_train_r2_score=r2_scere{guess_random(X_train), train_target)

print("The error was calculated by assignimg random values to the prediction train_r2_score: ", puess_random_train_r2_score)
guess_random_val_r2_score-r2_score(guess_random{X_val}), val_target)

print("The error was calculated by assigning random values te the prediction val_r2_score : ", guess_random_val_r2_score)
guess_random_test_r2_score=r2_scere(guess_random(X_test), test_target)

print("The error was calculated by assigning random values to the prediction test_r2_score : ", guess_random_test_r2_score)

The errcr was calculated by assigning random values tc the prediction train_r2_score: -@.85%6218778725828
The errcr was calculated by assigning random values to the prediction val_r2_score : -8.9744822492948388
The error was calculated by assigning random values to the prediction test_r2_score : -8.8477264614118633

We mode o prediction and filled the predictions with random value between the Lowest and highest volues of AQI column.
def guess_random{inputs):

lo, hi = df full.AQI.min(), df_full,AQI.max()

return np.randem.random{len({inputs)) * {(hi - lo) + lo

guess_random_train_r2_score=r2_score{guess_random(X_train), train_target)

print("The error was calculated by assigning random values to the predicticn train_r2_score:
guess_random_val_r2_score=r2_score(guess_random({X_val}, val_target)

print("The error was calculated by assigning random values to the predicticn val_r2_score :
guess_random_test_r2_score-r2_score(guess_random(X_test), test_target)

print("The error was calculated by assigning random values to the prediction test_r2_score : ", guess_random_test_r2_score}

", guess_random_traim_r2_score)

» Euess_randeom val r2_score)

The errer was calculated by assigning random values to the prediction train_r2_score: -@.352621877872532%

The errer was calculated by assigning random values to the prediction val_r2_scere @ -8.9744822492948388
The errer was calculated by assigning random values to the prediction test_r2_score @ -8.8477264£14118593
results = []

#we created a dict where we create objects from different models

models = {

‘LinearRegression’: LinearrRegression{),

'Ridge": Ridge(),

'SEDRegressor' @ SEDRegressor(l,

‘elasticnet” :elasticnet(),

'Lasso" @ Lasso{),

'SWR' :SwR{kernel='linear'),

‘GradientBoostingRegressor®: GradientBoostingRegressor(random_state=42)

def try_model(model,name):
model.fit(x_train, train_target)
train_preds = model.predict(X_train)
val_preds = model.predict(X_val)
test_preds-model.predict(x_test)

The R~2 score indicates how well the model predicted. A volue close to 1 indicates that the model predicted perfectly.
train_r2_score = r2_score(train_target, train_preds})

val_r2_score= r2_score(val_target, val_preds)

test r2_score = r2_score(test target, test preds)

print(f"{name} Model:")

print("Train r2_score : ", train_r2_score)

primt("validation r2_score : ", val_r2 score)

primt("Test r2_score : ", test_r2_score)

print("-" = 2a)

We add the name of each model and the scores of that model to the result Llist.

results.append({'Model’': name, °"Train R2 Score': train_r2_score, 'validaticn R2 score': wal_r2_scere, ‘Test R2 score': test_r2_score})

Train and test each model
for name, model in models.items():
try_model({model,name)

LinearRegression Model:

Train r2_score : @.7144@824257214825
Validation r2_score : ©.6991517366500604
Test r2_score : @.781951588128177

Ridge Model:

Train r2_score : @.7144817681711486
Validation r2_score : @.6992243138431155
Test r2_score : 8.78195839516236430
5GDRegressor Model:

Train r2_score : @.7125869888377176
Validation r2_score : @.69880467308971249
Test r2_score : 8.70822241844713335
ElasticMet Model:

Train r2_score : @.6678585477725734
Validation r2_score : @.6688643520722499
Test r2_score : 8.6568487381351258

Lasso Model:

Train r2_score : @.785382958723212
Validation r2_score : ©.69746951083684444
Test r2_score : @.5944735351166755

SVR Model:

Train r2_score : ©.6867631830121381
Validation r2_score : ©.6784261399590848
Test r2_score : @.67627828526675916

GradientBoostingRegressor Model:

Train r2_score : ©.865509281465258
Validation r2_score : ©.84360815568383004
Test r2_score : @.85B808948A53883309

%xtime

from sklearn.tree import DecisionTreeRegressor, plot_tree
tree = DecisionTreeRegressor(random_state=42)
try_model(tree,name="DecisionTreeRegressor”)

DecisionTreeRegressor Model:

Train r2_score : 0.99955763609684648
Validation r2_score @ 0.6862123481180987
Test r2_score : 9.9411874379398598

CPU times: total: 46.9 ms
Wall time: 54.4 ms

plt.figure(figsize=(48, 29))
The max_depth=3 parameter specifies 3 depth Levels, filled=True makes the tree nodes colored, the feature names=numeric_cols+encoded cols parameter specifies the feature names.
plot_tree(tree, max_depth=3, filled=True, feature_names=numeric_ccls+encoded_cols);

co <=8

squarad_amor = 6245113
saripies = 3670
e = 133 563

PH2.5<- 0508 02.<- 0313
equarsd_sror = 2582.43 1 oo = 1422093
Sarpies = 2673 5
vl = 109205 valla =212 113
PUZ5 <= 0387 10 <=0 0564 ity Jeipur <05
wared_amror = 64,339 squasd_grror = 3149.382 ared._srror = 020,905 oror =
i =9174 i = 440 s = 120 g = 018
8= 0300 Vs = 167 428 vaa= 13287 v = 223 108
ety LT 03 0365) o< otz P2 NO <= 084 PNZ5<= 0675
red e~ 862005 mulrsﬂ s (453 sijor = 3242.508 s o 2 904 sumned oo+ mm-m sauared_siror - 2429268 e anor - 004209
:amnln <:=n mpl.. ke sarpls 201

NANANLA DN

sEtime

Makes predictions using a forest of decision trees. The n_jobs—-1 parameter specifies the number of cores to be used in training the modet.

rf - RandomForestRegressor(random_state-42, n_jobs—-1)

try_model(rf,name="RandonForestRegressor™)

RandomForestRegresser Model:

Train r2_score : ©.9785047729449841
validation r2_score : @.5508979282786836
Test r2_score : ©.9558670972098635

: total: 5.42 s
784 ms

rf.feature_importances_

©.802125631)

importance_df = pd.DataFrame({
‘festure’: numeric_cols+encoded cols,
“importance: rf.feature_importances_

array([9.27618583, @.05094242, 0.84686549, 0.125725
5.82042566, ©.33951192, 6.85512271, 8.91785045, ©.08469566,
2.01685565, ©.00154024, 0.00287961, 0.01153282, ©.00320607,

}).sort_values(importance’, ascending=False)

importance_df .head(18)

feature importance

6 [e0] 0330511
0 PM25 0.276106
3 N2 0.125725
1 PM10 0.060942
7 502 0055123
2 NO 0.046065
5 NH3 0020425
4 NOx. 0019617
8 Toluene 0.017850

10 City_Ahmedabad 0.016855

. ©.81961694,

sns.barplot{data=importance_df.head(1@), x='importance', y="feature'};

8

2

NO2
PM10

s02

feature

NO
NH3
NOx

Toluene

City_Ahmedabad

e
o
<

005

010

0.15 0.20
importance

025

o
w
=]

-1 ensures that gll cores are used and the model training can be completed in a shorter time.

We found the GradientBoostingRegressor model to be suitable for our data set. We tried to find the best model by optimizing the model hyperparameters using RandomizedSearchCv.

GBR = GradientBoostingRegressor()

param_distributions = {
'n_estimators': [58, 168, 280, 3881,
‘learning_rate': [8.881, 8.81, 8.1, 8.2],
"max_depth': [3, 4, 5, 61,
'min_samples_split': [2, 5, 181,
'min_samples_leaf': [1, 2, 4],
'subsample': [@.8, 2.9, 1.8]

1562]: # We used RandomizedSearchCV to eptimize the hyperparameters of the GradientBoostingRegressor model
from sklearn.model_selection import RandomizedSearchCW
randomized_search = RandomizedSearchCV(
estimator=GER,
param_distributions=param_distributions,
n_iter=18,
cv=5,
verbose=1,
n_jobs=-1,
random_state=42

randomized_search.fit(¥_train, train_target)

Fitting 5 folds for each of 18 candidetes, totalling 58 fits

1562]: 3 RandomizedSearchCV

{ » estimator: GradientBoostingRegressor |

* GradientBoostingRegressor

iaradientBoostingRegressor()

print("Best Hyperparameters :", randomized_search.best_params_}

print("Best Score :", randomized_search.best_score_)

Best Hyperparameters : {'subsample': 1.8, 'n_estimators': 58, 'min_samples_split': 5, 'min_samples_leaf': 2, 'max_depth': 5, 'learning_rate': 8.1}
Best Score : B8.841211834919575

best_model = randomized_search.best_estimator_
best_model.fit(X_train, train_target)
train_preds = best_model.predict{X_train)
val_preds = best_model.predict(X_val)
test_preds=best_model.predict({X_test)

train_r2_score = r2_score(train_target, train_preds)
val_r2_score= r2_score{val_target, val_preds)
test_r2_score = r2_score(test_target, test_preds)
print{"Train r2_score : ", train_r2_score)
print{"Validation r2_score : ", val_r2_score)
print("Test r2_score : ", test_r2_score}

Train r2_score : @.9997352043870428
Validation r2_score : @.856@35154876472
Test r2_score : ®@.83966827312611687

def plot_actual_predict_graph{test_target,test_preds):
Scatter plot
plt.scatter(test_target, test_preds}
plt.plot{[min(test_target)}, max(test_target)], [min(test_target), max(test_target)], 'k--', 1lw=2)
plt.xlabel('&Actual Values')
plt.ylabel('Predicted Values")
plt.title{"Scatter Plot of Actual and Predicted Walues')
plt.show()

plot_actual_predict_graph(test_target,test_preds)

Scatter Plot of Actual and Predicted Values

Predicted Values
8
o

150
100
50
50 100 150 200 250 300 350
Actual Values
[1566]: def plot_residual_graph{test_target,test_preds}:

#lle assign the difference between the torget and the prediction to the resivals variable
residuals = test_target - test_preds
#each point represents (x=predicted value, y=residugl of that value).
plt.scatter(test_preds, residuals)
plt.hlines{@, min(test_preds}, max(test_preds)}, colors="r', linestyles='dashed') # we drew y= 8 Line
plt.xlabel{ 'Predicted Yalues')
plt.ylabel{'Residuals")
plt.title('Residual Graph'}
plt.show()

plot_residual_graph{test_target,test_preds)

Residual Graph

L]
150

100

Residuals

=50

50 100 150 200 250 300
Predicted Values

#iWe wrote a function to predict when external daota is entered.

def predict_input(single_input):
input_df = pd.DataFrame([single_input]}
input_df['Date’'] = pd.to_datetime(input_df['Date’'], format='%d-Em-%Y')
input_df['Year'] = input_df['Date’].dt.year
input_df[numeric_cols] = imputer.transform{input_df[numeric_cols])
input_df[numeric_cols] = scaler.transform{input_df[numeric_cols])
input_df[encoded_cols] = encoder.transform{input_df[categorical_cols])
X_input = input_df[numeric_cols + encoded_cols]
pred = best_model.predict{X_input)[®@]
return pred

#We created an input as a single data entry.
new_input = {'City*: "Delhi’,
‘PM2.5": 23.2,

'PM1@": 33.2,
'NO': 18.2,
'NO2': 4.2,
'MOx": 18.4,
'NH3": 52.8,
'C0': 13.8,
'502': 20.8,

'Toluene': 89.8,
'‘Date’: "©1-01-2819",

predict_input({new_input)

159.47885573245458

results_df = pd.DataFrame(results)

results_df

Model Train R2 Score Validation R2 Score Test R2 Score
0 LinearRegression 0.714402 0.699152 0.7014952
1 Ridge 0.714402 0.609224 0.701984
2 SGDRegrassor 0.712587 0.608805 0.702224
3 ElasticMet 0.667051 0.668864 0.656041
4 Lasso 0.705383 0.697470 0.604474
5 SVR 0.686763 0.678426 0.676278
6 GradientBoostingRegressor 0.863599 0.843602 0.858000
i DecisionTreeRegressor 0.999558 0.686212 0.941187
8 RandomForestRegressor 0.978595 0.850898 0.855867

Visualizing the results

results_df.set_index('Model').plot(kind='bar', figsize={12, 8))

plt.title('R? Scores for Training, Testing, and Validation Data by Model')

plt.xlabel(Model")

plt.ylabel{'R?® Score')

plt.legend(title="Score Type')

plt.xticks(rotation=45)

plt.tight_layout() # Ensures that all elements (axis Labels, titles, subtitles, etc.) are properly ploced within the figure areag.
plt.show()

R2 Score

10

08

0.

o

0.

s

0

N

0.0

Score Type
mmm Train R2 Score
wem Validation R2 Score
mm Test R2 Score

&

,os

Gl
&

EY

R* Scores for Training, Testing, and Validation Data by Model

N %o Q-
& N o

&

&

Ol
& &

Model

