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1.0 INTRODUCTION 

 

Hallmarks Of Cancer  

The hallmarks of cancer are six biological capacities acquired during the multifaceted development 

of human tumors. These hallmarks serve as a guiding principle for understanding the intricate 

complexities of neoplastic disease. They encompass the sustaining of proliferative signalling, the 

evasion of growth suppressors, the resistance to cell death, the enabling of replicative immortality, 

the induction of angiogenesis, and the activation of invasion and metastasis. Tumors contain 

various recruited, seemingly normal cells that contribute to acquiring hallmark traits by creating 

the "tumor microenvironment." 

Beneath these hallmarks lie genome instability, which generates the genetic diversity that 

accelerates their acquisition, and inflammation, which fosters multiple hallmark functions. In the 

past decade, conceptual advancements have introduced two emerging hallmarks of potential 

generality to this list: the reprogramming of energy metabolism and the evasion of immune 

destruction.   

 

 

 

Figure-1: The Cells of the Tumor Microenvironment 
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• (Upper) An assemblage of distinct cell types constitutes most solid tumors. Both the parenchyma and stroma 

of tumors contain distinct cell types and subtypes that collectively enable tumor growth and progression. 

Notably, the immune inflammatory cells present in tumors can include both tumor-promoting as well as 

tumor-killing subclasses. 

 

• (Lower) The distinctive microenvironments of tumors. The multiple stromal cell types create a succession of 

tumor microenvironments that change as tumors invade normal tissue and seed and colonize distant tissues. 

The abundance, histologic organization, and phenotypic characteristics of the stromal cell types and the 

extracellular matrix (hatched background) evolve during progression, enabling primary, invasive, and then 

metastatic growth. The surrounding normal cells of the primary and metastatic sites, shown only 

schematically, likely also affect the character of the various neoplastic microenvironments.  

 

 

 

 

Figure-2: The transformation process 

 

Different insults continuously act on cells leading to transformative alterations in (epi) 

genetics, chromosomal numbers and arrangements, and heterotypic interactions which 

undergo cycles of clonal selection leading to acquisition of cancer-competent traits, the 

hallmarks.  

 

1. Sustained proliferative signalling. 

Cancer cells possess a characteristic ability to sustain chronic proliferation, enabling the 

cells to continuously divide. This refers to their capacity to activate signalling pathways 

that drive cell growth and division. Eg:- MEK-ERK Pathway, AKT/PI3K Pathway may 

get overstimulated in such cells, increasing gene expression and causing persistent 

production of proteins which can help in cell division.  
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Figure-3: The six hallmarks of cancer 

 

2. Evading growth suppressors                   

 Growth suppressor genes typically function to inhibit cell growth and division. Several tumor-

suppressive genes, encoding proteins with diverse mechanisms to inhibit cellular growth and 

proliferation, have been identified. The expression of genes involved in cell cycle control, 

apoptosis induction, and DNA repair following DNA damage. In cancer cells, these genes are often 

inactivated, either through mutations that impair their function or by mechanisms that prevent their 

expression. Example:- p53: "guardian of the genome," p53 is a crucial tumor suppressor gene. It 

is activated in response to cellular stress, such as DNA damage, and can trigger cell cycle arrest, 

DNA repair, or apoptosis (programmed cell death). 

 

3. Resisting cell death          

One of the key hallmarks of cancer cells is their ability to resist cell death. This allows them to 

survive and proliferate uncontrollably, leading to tumor growth and metastasis. Example:- a. 

Activation of Anti-Apoptotic Pathways: NF-κB: This transcription factor can activate genes that 

promote cell survival and inhibit apoptosis. 
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4. Enabling replicative immortality       

 This characteristic allows cancer cells to divide indefinitely, without undergoing the normal 

process of cellular aging. This is achieved by overcoming the "Hayflick Limit" that limits the 

number of times human cells can divide. Here are some ways cancer cells achieve replicative 

immortality: Telomere maintenance and Alternative lengthening of telomeres (ALT) pathway. 

 

5. Inducing Angiogenesis 

Cancer cells acquire the ability to induce angiogenesis, which is the formation of new blood 

vessels. This process not only provides the tumor with a continuous supply of oxygen and nutrients 

but also facilitates the removal of toxic metabolic wastes and allows the cancer to spread via the 

bloodstream (hematogenous metastasis). 

 

6. Activating Invasion and Metastasis 

Invasion and metastasis are a critical capability that cancer cells must acquire to progress from 

localized tumors to life-threatening diseases. Epithelial carcinomas of higher grades often show 

more invasive and metastatic behaviours, which are usually the cause of death in cancer patients 

rather than the primary tumor itself. The cancer cells undergo complex morphological changes and 

alterations in cell-cell or cell-matrix interactions that enable them to initiate the invasion-

metastasis cascade. The cancer cells co-opt "Epithelial-Mesenchymal Transition" (EMT), a 

developmental program to facilitate invasion and metastasis. In this process, epithelial cells (which 

are usually stationary and form tight layers) transform into mesenchymal cells (which are more 

mobile and invasive). A key cell-to-cell adhesion molecule, E-cadherin, plays a major role in 

inhibiting invasion and metastasis. E-cadherin is frequently downregulated or inactivated in 

aggressive carcinomas, N-cadherin, typically found in migrating neurons and mesenchymal cells, 

is upregulated in invasive tumors. 

 

 

 

 

 

 



 

11 
 

EMERGING HALLMARKS: - 

 

 

 

Figure-4: Emerging Hallmarks and Enabling Characteristics 

 

1. Reprogramming Energy Metabolism: 

Metabolic reprogramming is now recognized as one of the hallmarks of cancer, enabling tumor 

cells to meet their increased energy and biosynthetic demand. 

Cancer cells often exhibit altered metabolic pathways to support their rapid growth and 

proliferation. This phenomenon is known as the Warburg effect, where cancer cells preferentially 

utilize glycolysis for energy production, even in the presence of oxygen. This leads to the 

production of lactate and the diversion of metabolic intermediates for biosynthetic processes, 

which are essential for cell growth and division.  

 

2. Evading Immune Destruction: 

The immune system plays a key role in detecting and eliminating cancer cells. However, tumors 

can develop mechanisms to evade immune destruction, which has been proposed as an emerging 

hallmark of cancer. Evasion of immune attack involves: 
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Downregulation of tumor antigens to avoid detection by the immune system, Recruitment of 

immunosuppressive cells like regulatory T cells and myeloid-derived suppressor cells to the tumor 

microenvironment. 

Metabolic competition between cancer cells and T cells in the tumor microenvironment can also 

impair immune function. For example, cancer cells may deplete glucose and amino acids needed 

to support T cell activity. 

 

SIGNALING PATHWAYS IN CANCER 

An important focus of study within cancer research is called signal transduction. All the cells in 

the human body need external and internal signals to tell them what to do – grow, move, secrete 

something, live, die, etc. These messages are transmitted via a series of proteins, in an extremely 

complex and carefully regulated process. In fact, misbehaviour of these very pathways is often 

what causes and sustains cancer. Pathways involved in cell proliferation; differentiation can be 

dysregulated such that it is overactivated leading to uncontrolled cell division. 

Some important signalling pathways in cancer research are-  

 

1. RAS Pathway -   

The RAS/RAF/MEK/ERK pathway transduces signals from the extracellular environment to the 

cell nucleus, regulating cell growth, division, differentiation, cell cycle, wound healing, tissue 

repair, and angiogenesis. 

 

Mutations in the RAS family, particularly in KRAS, result in its constant activation in the GTP-

bound state. This leads to persistent stimulation of downstream effectors without external growth 

signals, promoting continuous cell proliferation. It also creates a tumor microenvironment that 

supports tumor progression and immune escape. 
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Figure-5: Ras Signalling Pathway 

 

2. Wnt Pathway  

The Wnt signaling pathway regulates cell fate determination, proliferation, migration, and polarity. 

It has two main branches: canonical (Wnt/β-catenin) and non-canonical pathway Mutations in Wnt 

pathway components (like APC, β-catenin) lead to deregulated β-catenin accumulation, causing 

continuous transcription of genes that promote cell proliferation and survival, thus contributing to 

tumor growth. 
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Figure-6: Wnt signalling pathway 

 

3.  PI3K/AKT/mTOR Pathway 

This pathway is critical for regulating the cell cycle, promoting cell survival, and preventing 

apoptosis. The three main components, PI3K, AKT, and mTOR, work together to activate 

transcription factors and promote protein synthesis necessary for cell growth and division. 

Aberrant activation of the PI3K/AKT/mTOR pathway result in prolonged cell survival and 

resistance to apoptosis, contributing to tumor formation and growth. PI3K mutations (especially 

in the p110α subunit) and mTOR mutations are common in several cancers. 
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Figure-7: PI3K/AKT/mTOR Pathway 

 

4. NF-κB Pathway 

NF-κB regulates genes involved in immune and inflammatory responses. It is usually sequestered 

in the cytoplasm by inhibitory proteins and is activated by various stimuli, leading to the 

transcription of pro-inflammatory and survival genes. Deregulated activation of the NF-κB 

pathway results in excessive inflammatory responses, which can lead to chronic inflammation, 

promoting tumor growth and survival by creating a pro-inflammatory tumor microenvironment. 
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Figure-8: NF-κB Pathway 

 

 

5.  Calcium Signalling Pathway 

Calcium (Ca²⁺) is involved in several cellular processes such as gene transcription, apoptosis, 

autophagy, and cell proliferation. Abnormal calcium signalling can contribute to uncontrolled 

proliferation, invasiveness of tumour cells, and resistance to cancer therapies. 

 

• Elevated intracellular Ca²⁺ levels are linked to enhanced cell migration and metastasis. 

Calcium signalling pathways, such as those mediated by TRP and other calcium channels, 

help regulate cancer cell motility, contributing to metastatic behaviour. 
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• Ca²⁺/calmodulin (CaM) complexes activate multiple proteins, including CaM-dependent 

protein kinase IIs (CaMKIIs). This activation prolongs kinase activity, contributing to 

cancer cell survival and proliferation. 

• Calcium signalling remodels the tumour microenvironment by regulating immune cells, 

promoting angiogenesis (formation of new blood vessels), and managing hypoxia (low 

oxygen conditions). For example, Ca²⁺ signalling affects the recruitment of macrophages, 

natural killer (NK) cells, and T cells, influencing the immune response in the TME. 

• Various calcium channels and transporters, such as TRP channels, voltage-gated calcium 

channels (VGCCs), and stretch-activated Piezo channels, play essential roles in cancer 

cells. They help control calcium influx and efflux, which is crucial for maintaining the 

balance required for various signalling pathways in cancer. 

 

 

 

Figure-9: Calcium signalling  
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What are miRNAs? 

miRNAs are small non-coding RNAs, with an average 22 nucleotides in length. Most miRNAs are 

transcribed from DNA sequences into primary miRNAs (pri-miRNAs) and processed into 

precursor miRNAs (pre-miRNAs) and mature miRNAs. In most cases, miRNAs interact with the 

3′ UTR of target mRNAs to suppress expression. miRNAs have been shown to activate gene 

expression under certain conditions. Recent studies have suggested that miRNAs are shuttled 

between different subcellular compartments to control the rate of translation, and even 

transcription. miRNAs are critical for normal animal development and are involved in a variety of 

biological processes. Humans have been found to have about 2,500 microRNAs, which are 

engaged in almost every biological activity and an aberrant expression of miRNAs is associated 

with many human diseases, such as cancers.  

 

Biogenesis: 

MicroRNA biogenesis starts in the nucleus and ends at the cytoplasm. The biogenesis begins with 

DNA transcription, mediated by RNA Polymerase II or III. The first transcript has a hair-pin 

structure, with a dsRNA stem, protected at both the ends by capping and poly-A tailing. It consists 

of 100-10000 base pairs and is known as the primary or primordial (pri) miRNA. 

 

Pri miRNA is further processed in the nucleus by DGCR8 and RNase III Drosha enzyme complex, 

leading to uncapping and poly-A tail removal. This leads to the formation of a ds-RNA molecule 

with a length of 65-100bp, known as the precursor (pre) miRNA. Pre miRNA is exported to the 

cytoplasm from the nucleus by exportin-5 and Ran-GTP complex. 

 

In the cytoplasm, the pre miRNA is further processed by RNase type III Dicer enzyme. It cleaves 

the unpaired head of the hairpin structure and generates the miRNA duplex which is then interacts 

with RISC complex. Argonaut proteins in RISC leads to the cleavage of the duplex and it generates 

the mature miRNA. 
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Figure-10: MicroRNA biogenesis 

 

Oncomirs and tumour-suppressors:  

Cancer-related miRNAs can be classified according to target mRNA function as tumor suppressor 

or oncogenic miRNAs (oncomiRs). This segregation is based on the ability of miRNA molecules 

to interfere in carcinogenesis-related processes, including mechanisms associated with cell 

migration and invasion, apoptosis and proliferation. Tumor suppressor miRNAs regulate the 

expression of mRNAs required for cell division or survival, whereas oncomiRs are more strongly 

expressed in cancer cells and down-regulate tumor suppressor genes, leading to enhanced cancer 

cell division.  

 

miRNA Prediction Tools 

MicroRNAs regulate gene expression by binding to microRNA responsive elements (mREs) on 

target mRNAs, resulting in significant alterations in a variety of physiological and pathological 
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processes. Thus, identifying miRNA-mRNA target interactions is critical for understanding the 

regulatory network mediated by miRNAs. Usually, computational prediction combined with 

experimental validation of these miRNA-mRNA interactions is the most effective approach to 

accomplish this goal. Therefore, computational techniques that assist in predicting which genes 

are targeted by miRNAs are known as microRNA (miRNA) prediction tools. 

Several approaches underlie the development of miRNA target prediction algorithms. 

These can be divided into two main categories:  

1) Algorithms based on the interaction between miRNA and mRNA or features of the 

mRNA sequence: 

● Seed Match: The seed section of the miRNA (nucleotides 2-7) is critical for target 

recognition. The tools check for perfect or near-perfect complementarity between 

the seed sequence and the mRNA target region. 

● 3’ UTR sequence: Most programs use the 3’ UTR dataset to look for a target site, 

because many studies have shown that this area is the most frequently targetable in 

miRNAs.   

● Conservation: The target site's evolutionary conservation across different species 

indicates its functional value. Tools look for the presence of the target location in 

similar organisms.  

● Free Energy: The energy required for miRNA-mRNA binding is an important 

consideration. Tools calculate the free energy change during interaction, with larger 

negative values suggesting stronger binding. 

● Site Accessibility: The mRNA target site should be accessible for miRNA binding. 

Some tools consider factors like RNA secondary structures that might hinder 

interaction. 

 

2) Statistical inference based on Machine Learning. 

● Instead of using miRNA-mRNA properties like sequence or free energy, machine 

learning approaches identify putative miRNA targets by referencing miRNA-

mRNA interactions that have been shown to have biological significance.  

● In general, machine learning is an artificial intelligence application that gives 

systems the capacity to automatically get better via experience; they "learn" from 
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sample datasets and apply the knowledge they have gained to forecast unknown 

data. 

 

Some prediction tools and their features:  

1) TargetScan  

● With TargetScan, one can search for miRNAs by name, genes by name, or from 

miRNA families that are poorly, moderately, or widely conserved among various 

species.  

● For conservation, the conservation of a 3’ UTR is first determined followed by 

analysis of a specific k-mer (8mer, 7mer-m8, or 7mer-1A). Since one 3’ UTR can 

contain multiple target sites, an aggregate PCT is provided. For each type of k-mer, 

the number is provided for that target and whether or not it is considered a 

conserved site or a poorly conserved site. 

 

2) PicTar 

● It is a computational tool designed to find common targets of microRNAs 

(miRNAs). 

● To find miRNA targets, PicTar employs genome-wide alignments from eight 

distinct vertebrate species together with statistical testing.  

● The tool has demonstrated a high degree of accuracy by correctly identifying 

known miRNA targets and experimentally validating seven predicted targets.  

 

3) miRANDA 

● The technique was first employed to locate targets in Drosophila, but it is not 

restricted to this use; it has also been utilized to predict targets in humans. 

● miRanda does a three-step analysis:  

- To check for WC matches, the miRNA sequences provided as input are 

screened against the 3' UTRs provided by the user.  

- The free energy of each miRNA:mRNA target pair that surpasses a certain 

matching score is determined. Each target with a predicted free energy less 

than a threshold is then advanced to the last step.  
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- Finally, conservation of both binding site and position serves as a final filter. 

The remaining options are graded according on how closely they match the 

miRNA. 

● A predicted target can be ranked high in the results if it receives a high individual 

score or has several anticipated sites.  

● Unlike most miRNA target predictors, miRanda evaluates matching across the 

complete miRNA sequence. It considers the seed region by placing a higher priority 

on matches in that region. Matches can contain a restricted number of G-U wobble 

pairs, as well as insertions and deletions. 

 

4) miRanda-mirSVR 

● miRanda-mirSVR is an online tool that integrates two approaches:  

- miRanda is used to discover potential target locations. 

- MirSVR (support vector regression) is used to rate them, using real-valued 

results.  

● The findings are pre-computed, with no option to provide additional data, resulting 

in no user adjustment.  

● MirSVR uses the real-valued outputs to generate a score that represents a miRNA's 

effect on expression.  

● mirSVR was trained on nine miRNA transfection studies on HeLa cells and 

integrates a variety of additional essential parameters, including site accessibility, 

AU flanking content, target site position within the three UTRs, and UTR length. 

 

5) miRWalk 

● It was first introduced in 2010 by researchers at the University of Heidelberg in 

Germany.  

● The major goal was to create a comprehensive database for predicting miRNA 

binding sites and facilitating the research of miRNA-target interactions.  

● miRWalk employs a thorough prediction method that searches the entire gene 

sequence (5' UTR, CDS, and 3' UTR) for probable miRNA binding sites.  
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● It uses complementary base pairing between miRNAs and target mRNAs to predict 

binding sites. 

 

6) TargetMiner   

● Targetminer is a bioinformatics tool designed for identifying potential microRNA 

targets in a given sequence.  

● It is based on machine learning and uses systematic identification of negative cases. 

● Key Features:  

- Machine learning-based model. 

- Focuses on minimizing false positives. 

7) mirTargetLink2.0 

● It integrates data from high throughput experimental studies and computational 

predictions, this improves reliability and comprehensiveness of predicted 

interactions.  

● It provides users with a visualization interface to explore and analyze interaction 

networks between miRNAs and target genes by Machine learning algorithms. 

● Key Features: 

- Interactive Visualization 

- Hypothesis generation about miRNA function and regulatory mechanisms 

- Data integration 

8) DIANA Tools 

● DIANA Tools (DNA Intelligent Analysis) is a comprehensive suite of web-based 

resources dedicated to microRNA (miRNA) analysis.  

● Among its functionalities, DIANA Tools stands out for its miRNA target prediction 

algorithms, particularly microT and microT-CDS. 

● Key Features: 

- Predicts targets in both the 3' UTR and CDS regions. 

- Incorporates miRNA binding site conservation and accessibility. 

- Includes a comprehensive database of experimentally validated targets. 

9) StarBase 
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● StarBase (STAtic RNA-RNA interaction Balance Exploration) is a powerful online 

resource for exploring RNA-RNA interactions, particularly those involving 

microRNAs (miRNAs). 

●  Key Features: 

- miRNA-target interactions that are experimentally validated using CLIP-

Seq (Cross-linking Immunoprecipitation Sequencing) data.  

- Support for Multiple Species including human, mouse, and zebrafish, 

making it useful for researchers working with various model organisms. 

- Interactive tools for visualizing and analysing RNA interactions 

10) RNA22 

● Pattern-based miRNA target prediction tool that first identifies putative target sites 

and then evaluates them for complementarity and accessibility. It uses statistical 

methods to discover recurring patterns in the input miRNA sequences. 

● Key Features: 

- Does not rely on conserved sequences. 

- Evaluates miRNA-mRNA binding at a whole-transcriptome level. 

- Provides a web interface for easy access. 

11) miRDB 

● Database for miRNA target prediction and functional annotations. It uses a machine 

learning-based approach to predict targets based on thousands of miRNA-target 

interactions. 

● Key Features: 

- Employs a support vector machine (SVM) model trained on high-

throughput experimental data. 

- Provides target predictions for various species. 

- All the predicted targets have target prediction scores between 50 - 100. The 

higher the score, the more confidence we have in this prediction. 

12) RNAhybrid 

● Computational tool used for predicting miRNA target sites by finding the 

energetically most favorable hybridization sites between miRNA and mRNA. 

● Key Features: 
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- Calculates the minimum free energy of hybridization. 

- Allows prediction of non-canonical binding sites. 

- Can be run locally or online. 

The major tools used and focused on, for collecting the experimental data were TarBase and 

miRTarBase and for collecting the prediction data, mirDIP was used. 

 

1. TarBase:  

i. It is database that stores a collection of experimentally validated 

microRNA/miRNA target interactions. The interactions stored in this database has 

been tested by various test methods like Luciferase Reporter Assays, Western 

blotting, qRT-PCR & CLIP. It The data provided by TarBase is used by scientists 

and researchers all over the world for biological studies. 

 

ii. It is an enormous database of over 6 million entries available online, which is three 

times larger than miRTar-Base and six times larger than TarBase-v8.0. This makes 

it the largest collection of experimentally validated miRNA-gene interactions to 

date. Utilizing mi-croCLIP, a cutting-edge CLIP-Seq analysis framework that 

integrates deep learning classifiers under a super learning scheme for CLIP-Seq-

guided miRNA interaction discovery, is a first for TarBase. Additionally, using a 

standardized data processing pipeline, TarBase-v9.0 incorporates interactions from 

direct miRNA–target chimeras generated by the de novo analysis of CLASH and 

qCLASH experiments, as well as miRNA–gene pairs derived from the analysis of 

miRNA-specific transfection / knockdown RNA-Seq experiments. TarBase v9.0 is 

a significant release as it includes around 34,000 pairs of interactions between host 

mRNAs and virally-encoded miRNAs, interactions that result in target-directed 

miRNA degradation (TDMD) events, and millions of precise miRNA-binding 

positions that can be resolved down to the cell type. (Skoufos et al., 2024) 

 

iii. The TarBase interface has undergone a complete redesign, adding a number of new 

features to increase its usefulness and versatility. With a plethora of filtering 

options, including cell lines, experimental settings, cell types, experimental 
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procedures, species, and tissues of interest, the recently developed interface enables 

users to create complex searches. Moreover, a multitude of fine-tuning features 

have been smoothly incorporated into the platform, allowing users to further refine 

their search results according to expression levels, microRNA confidence, 

microCLIP and DIANA-microT 2023 scores, and more. Furthermore, the platform 

now allows for unlimited local retrieval of the interactions as well as all related 

metadata. (Skoufos et al., 2024) 

 

iv. Additionally, TarBase-v9.0 connects to other biological databases with ease. 

TarBase has been included into Ensembl since version six. Ensembl genome 

browser allows viewing interactions with specific binding sites; miRBase and 

Ensembl provide access to gene and miRNA information, respectively. The 

RNACentral knowledgebase lists TarBase as another expert non-coding RNA 

resource. Lastly, publications' details may be obtained directly via the connection 

to PubMed, and DIANA-microT-CDS 2023 also provides access to predicted 

binding sites and miRNA-target interaction scores. (Skoufos et al., 2024) 

 

v. Primarly, during this study, interactions section of TarBase has been used to collect 

the data of microRNA targets, with primary interactions and which have been 

obtained through direct experimental method. The values with high confidence 

value had been filtered and extracted for later studies. 

 

vi. For both basic and applied RNA research projects, meticulous generation, curation, 

and indexing of miRNA–gene interactions across many experimental situations and 

species is crucial. The continuous dedication to methodically cataloguing millions 

of empirically supported miRNA targets for more than 15 years is demonstrated by 

TarBase-v9.0. With about 6 million entries and 2 million distinct miRNA-target 

combinations supported by 37 experimental procedures (both high- and low-yield) 

across 172 tissues and cell types, the most recent version is available. Crucially, it 

lists interactions that result in target-directed miRNA degradation (TDMD) events 

for the first time, as well as millions of miRNA-binding locations with cell-type 
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precision that are generated by the de novo analysis of cutting-edge NGS 

techniques. Users are able to access this information via a redesigned interface that 

adds a ton of new features and improves adaptability and user-friendliness. 

(Skoufos et al., 2024) 

 

vii. The greatest database of miRNA-gene interactions that has been supported by 

experimentation is TarBase v9.0. This abundance of data can confirm in silico 

expected interactions or in some circumstances even replace them. (Skoufos et al., 

2024) 

 

2. miRTarBase:  

i. More than 470,000 miRNA-target interactions (MTIs) have been added to the 

database miRTarBase as a whole. These MTIs are gathered by hand after NLP of 

the text is performed in order to filter research articles pertaining to functional 

investigations of miRNAs. Typically, reporter assay, western blot, microarray, and 

next-generation sequencing tests are used to experimentally confirm the gathered 

MTIs. When compared to other comparable, previously created databases, the 

miRTarBase offers the most current collection while having the most certified 

MTIs. 

 

ii. This tool is used for integrative analysis of high-throughput data, microRNA & 

target gene information, text-mining technique to prescreen literature and to study 

miRNA and 3’UTR-related SNPs or DRVs, regulatory factors of microRNA, 

circulating cell-free microRNAs, etc. Some notable features of the current version 

include word cloud of miRNA-disease information, miRNA-Target site viewer in 

CLIP-seq data, Clinical microRNA and gene expression profiles from TCGA, etc. 

 

iii. miRTarBase search option has been used in this study and the data had been 

extracted based on the CLIP-Seq. 

 

 



 

28 
 

iv. 2011 saw the initial release of miRTarBase. The number of MTIs that have been 

experimentally validated has grown significantly over the past ten years and now 

stands at a noteworthy level. Simultaneously, the miRTarBase web interface has 

undergone continuous updates and improvements to offer users a more effective 

and superior access experience. This latest update includes more biological data 

and a variety of miRNA expression patterns in addition to providing more thorough 

information on MTIs. Such data is displayed in an intuitive, beautiful, and succinct 

online interface. More effectively, MTIs were retrieved from related papers 

obtained from the PubMed literature database using an enhanced scoring system. 

The specificity and heterogeneity of miRNAs were shown by the miRNA 

expression profiles across extracellular vesicles, blood, and other organs, as well as 

by SNPs and DRVs in miRNAs and gene UTRs. These findings also supported the 

identification of miRNA biomarkers. (Huang et al., 2022) 

 

v. Version 9.0 has considerably enhanced the number of MTIs retrieved from research 

publications and CLIP-seq data over version 8.0. From 13 389 research publications 

and CLIP-seq data, a total of 19 912 394 empirically validated MTIs between 4630 

miRNAs and 27 172 mRNAs (target genes) were manually curated. To support the 

numerous MTIs reported, version 9.0 has integrated 440 CLIP-seq data from 44 

different independent investigations. (Huang et al., 2022) 

 

vi. Circular RNA and an upstream transcription factor can mediate the expression of 

miRNAs, which can control gene expression through a posttranscriptional 

regulatory mechanism. To learn more about the roles and biomarkers of miRNAs, 

a thorough analysis of their expression levels in extracellular vesicles or tissues is 

necessary. According to recent research, SNPs and variants influence the miRNA–

mRNA binding affinity and miRNA production rather than being controlled by 

regulators. In order to better explore the regulation mechanism of miRNAs, this 

update endeavors to create regulatory networks connecting targets, regulators, and 

miRNAs. Additionally, we show the distribution of miRNA expression in 

extracellular vesicles and throughout tissues, as well as SNPs and DRVs carried in 
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miRNAs or gene 3UTRs that may be linked to the genesis of disease. (Huang et al., 

2022) 

 

vii. It is interesting to note that papers referencing miRTarBase are scattered throughout 

a wide range of disciplines; nonetheless, for all miRTarBase versions, 

"biochemistry and molecular biology" and "oncology" alternate as the top two 

citation categories, with "genetics and heredity" typically following closely behind. 

Understanding the course of disease requires an understanding of miRNA 

regulation and target interaction. By offering a new web query interface, the revised 

miRTarBase facilitates the integration of regulators and targets and provides 

known, empirically confirmed MTIs to study miRNA regulation. (Huang et al., 

2022) 

 

viii. Furthermore, miRTarBase constructed an osteoarthritis-specific miRNA 

interactome expressing the gene in cartilage influenced by miRNA by combining 

the publicly available, empirically confirmed miRNA and target interaction 

database. A versatile search interface for miRNA, the target gene, and associated 

disorders is offered by miRTarBase. For instance, when we search for hsa-miR-

195-5p, a list of the main diseases that are associated with it appears; in this 

instance, glioblastoma cancer was the primary focus for this miRNA, which has 

been shown in independent studies and TCGA data to have a significant negative 

correlation with the progression of the disease. Together, we may find novel MTIs 

within our illness of interest and learn more about miRNA regulation by filtering 

known MTIs that are included in miRTarBase. (Huang et al., 2022) 

 

3. mirDIP: 

i. The revised version of mirDIP that is being given collects miRNAtarget 

interactions from several updated sources and then annotates them with the 

integrated score that was previously stated. In addition, MirDIP 5.2 includes 

context annotation for miRNA-gene connections for both healthy and diseased 

tissues. This allows for more in-depth examination of condition-specific miRNA 
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interaction networks. It also includes a curation of new miRNAs from RNAseq 

studies published in the literature, as well as interaction predictions for mir-

GeneDB and miRBase miRNAs, increasing the quantity and quality of miRNAs. 

(Hauschild et al., 2023) 

 

ii. 46 364 047 predictions for 27 936 genes and 2734 miRNAs are included in mirDIP 

5.2. The only resource that offers interactions for the high-quality data from 

mirGeneDB is mirDIP 5.2. (Hauschild et al., 2023) 

 

iii. To facilitate a range of workflows, mirDIP offers several query types: 

• The user can directly search for binary or quantile-normalized miRNA 

context associations by using the Search Tissues via miRNAs and miRNAs 

(scale) options. A score that indicates how well supported a miRNA's 

expression is in a given environment is generated by combining data from 

the chosen datasets for each miRNA. The number of selected sources in 

which the miRNA is expressed in the context divided by the number of 

selected sources that measure the miRNA in the context yields the score of 

a miRNA in a context for a binary value inquiry. (Hauschild et al., 2023) 

• Context-specific interactions are chosen by combining the relevant mirDIP 

interaction information with both miRNA and gene contexts through the use 

of the Search Tissues and Interactions option. (Hauschild et al., 2023) 

• The Tissue Matrix option displays the findings in an accumulated matrix 

with one column for each tissue and enables querying of context-specific 

miRNA and interactions. (Hauschild et al., 2023) 

 

iv. The context of each miRNA-gene interaction in the mirDIP database is rated 

according to data on the measurement of both miRNA and gene expression across 

several datasets. Value 0 denotes that at least one of the two molecules has no 

expression in the context across all of its sources, whereas value 1 shows that both 

entities' expression is unanimous among their respective sources (i.e., all the 

datasets that assessed the gene and miRNA in that context). (Hauschild et al., 2023) 
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v. Additionally, mirDIP v.5.2 integrates gene expression for 278 tissue/cell type and 

illness settings, including 90 distinct disease states for 27 576 genes and 188 distinct 

normal tissues and cell types (with differing degrees of tissue specificity). The 

range of miRNA expression in normal tissues is 1 to 206, however in illness settings 

it can range from 1 to a maximum of 92 situations. On the other hand, the expression 

of various microRNAs in sickness varies from 183 to 2529 miRNAs, whereas in 

normal conditions it varies from 1 to 2526 miRNAs. (Hauschild et al., 2023) 

 

 

GOAL OF THE STUDY: 

• To understand the regulation of oncomeric microRNAs in GBM tumors 

 

OBJECTIVES: 

• Identify the common target genes regulated by selected oncomiRs in GBM 

• Bioinformatic analysis of microRNA target expression at mRNA and protein levels 

• Network and pathway analysis using microRNA targets 

 

2.0 METHODS: 

 

1. Literature Review: 

We conducted thorough research of scientific papers to identify microRNAs (miRNAs) involved 

in GBM. A number of 8 miRNAs were selected for the study, namely, miR-21, miR-155, miR93, 

miR-221, miR-222, miR-196a, miR-10b and miR-182. 

 

2. Use of Experimentally Verified Databases: 

Utilized Bioinformatic tools such as TarBase and miRTarBase to select the target genes of the 

miRNAs. TARBASE v9.0 is a database consisting of experimentally supported miRNA targets on 

protein-coding transcripts. We extracted genes targeted by different microRNAs by selecting, 

homo sapiens as species, direct as experimental type and primary interactions only. 

miRTARBASE is a bioinformatic tool consisting of experimentally verified data of miRNA-target 
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interactions, validated by reporter assay, western blot, microarray and next-generation sequencing 

experiments. We used Clip-seq (NGS) and Microarray as filters to obtain data for targets regulated 

by OncomiRs involved in GBM, in humans. 

 

3. Prediction of miRNA Targets: 

Employed miRDIP prediction tool to predict the target genes of the selected miRNAs. miRDIP 

(microRNA Data Integration Portal) is a tool that integrates data from multiple microRNA target 

prediction and validation databases. We downloaded the data for all the 8 miRNA’s predicted 

target genes, with medium and high score.  

 

4. Common Target Identification: 

We identified 195 common targets shared among all selected miRNAs by analyzing and 

integrating the data from the aforementioned online tools. 

 

5. Categorization of Targets into Hallmarks of Cancer: 

Used TISIDB (Tumor-Immune System Interaction Database) to categorize the 195 common 

targets into various hallmarks of cancer and mapped targets to specific cancer pathways, such as 

proliferation, invasion, apoptosis, etc. TISIDB is a user-friendly web portal for a comprehensive 

investigation of tumour-immune interactions, which integrates multiple types of data resources in 

onco-immunology.  

 

6. Expression Analysis at mRNA level in GBM: 

Utilized GEPIA2 to check the level of regulation of the identified targets in GBM tissue samples, 

with the help of boxplots. GEPIA2 is a highly cited resource for gene expression analysis based 

on tumour and normal samples from the TCGA (The Cancer Genome Atlas) and 

the GTEx databases. It features 1,98,619 isoforms and 84 cancer subtypes, has extended gene 

expression quantification from the gene level to the transcript level, and supports analysis of a 

specific cancer subtype, and comparison between subtypes. In addition, GEPIA2 has adopted new 

analysis techniques of gene signature quantification inspired by single-cell sequencing studies. 

Focused on the targets showing significant differential expression in GBM. 
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7. Protein-Level Analysis: 

Performed protein expression validation using UALCAN (The University of ALabama at 

Birmingham CANcer data analysis) portal, to assess the levels of selected targets at the protein 

level in GBM. UALCAN is a comprehensive, user-friendly, and interactive web resource for 

analysing cancer OMICS data. It is designed to, a) provide easy access to publicly available cancer 

OMICS data (TCGA, MET500, CPTAC and CBTTC), b) allow users to identify biomarkers or to 

perform in silico validation of potential genes of interest, c) provide graphs and plots depicting 

expression profile and patient survival information for protein-coding, miRNA-coding and 

lincRNA-coding genes, d) evaluate epigenetic regulation of gene expression by promoter 

methylation, e) perform pan-cancer gene expression analysis, f) Provide additional information 

about the selected genes/targets by linking to GeneCards, Pubmed, TargetScan, The human protein 

atlas, DRUGBANK, Open Targets and the GTEx. These resources allow researchers to gather 

valuable information and data about the genes/targets of interest, g) provide clinical proteomic 

consortium data analysis including total/phospho-proteins and h) provide pediatric brain tumour 

gene expression and protein expression analysis. 58 target genes showcased down-regulation at 

protein level 

 

8. Network and Interaction Analysis: 

Used STRING analysis to evaluate the protein-protein interaction (PPI) networks of the selected 

targets. STRING database systematically collects and integrates protein-protein interactions-both 

physical interactions as well as functional associations. The data originates from several sources: 

automated text mining of the scientific literature, computational interaction predictions from co-

expression, conserved genomic context, databases of interaction experiments and known 

complexes/pathways from curated sources. We selected interconnected targets based on their 

relevance in the PPI network, aiming to identify key nodes in GBM pathways, out of which 45 

were observed to be statistically significant. The target interactions were observed and analysed 

based on the KEGG pathways, wiki pathways, reactome pathways, molecular function, cellular 

component and disease-gene associations. 

 

The experimental design of the study is shown below in Figure 11. 
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3.0 Results:  

The number of experimentally verified targets as obtained from Tarbase and miRTarbase for 

miRNAs-miR-21-5p, miR-93-5p, miR-155-5p, miR-10b-5p, miR-221-3p, miR-222-3p, miR-

182-5p, miR-196a-5p, are: 

Tarbase: 

List of microRNAs Number of targets identified 

from Tarbase 

miR-21-5p 7997 

miR-93-5p 6101 

miR-155-5p 4379 

miR-10b-5p 3351 

miR-221-3p 6719 

miR-222-3p 2934 

miR-182-5p 7228 

miR-196a-5p 9599 
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miRTarbase: 

List of microRNAs Number of targets identified 

from miRTarbase 

miR-21-5p 140 

miR-10b-5p 302 

mir-155-5p 216 

miR-93-5p 634 

miR-221-3p 30 

miR-222-3p 109 

miR-196a-5p 103 

miR-182-5p 111 

 

The number of predicted targets as obtained from miRdip for the same set of miRNAs are: 

microRNA No. of targets identified with 

medium Score 

No. of targets identified 

with high Score 

miR-21-5p 7570 1114 

miR-10b-5p 6570 952 

miR-155-5p 6643 977 

miR-93-5p 6329 931 

miR-221-3p 7619 1121 

miR-222-3p 7608 1119 

miR-196a-5p 6573 967 

miR-182-5p 6884 1013 

 

List of 195 common target genes of 8 microRNAs is found to be:  

ABCA1 EFCAB14 MFHAS1 SOD2 

ADAM10 EIF5 MPRIP SON 

ADAR ENTPD7 MTDH SORT1 

AFF4 FAM222B MTPN SP1 
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 AKAP11 FBXO45 NAA50 SPIN1 

ANKFY1 FEM1B NAP1L1 SPTY2D1 

APLP2 FGF2 NF1 SSH1 

ARHGAP11A FNDC3B NHLRC2 SSX2IP 

ARHGAP5 FOSL2 NR2C2 STRN 

ARHGEF12 FOXJ3 NRP1 SYNE2 

ARRDC3 FOXO3 NSD1 TBL1XR1 

ASH1L FRS2 NUCKS1 TCF12 

ATP2B1 FRYL NUFIP2 TEAD1 

ATXN1 GAN NUP58 TET2 

ATXN1L GFPT1 PAK2 TFRC 

BCAT1 GIT2 PAPOLA TGFBR1 

BCL2L11 GLS PJA2 THBS1 

BICC1 GRSF1 PODXL TMED7 

BICD1 GSPT1 POU2F1 TMEM245 

BMPR2 GTF3C4 PPP1CC TNKS2 

BRWD1 HELZ PRDM2 TNPO1 

C5orf24 HIF1AN PRRC1 TNRC6B 

CALU HIPK1 PTEN TNRC6C 

CANX HMGA2 PTPN14 TRAM1 

CASK HNRNPU PTPRJ TRIO 

CBX5 IREB2 PURB TSC22D2 

CCNT2 ITGB8 QKI TTN 

CDC27 KBTBD2 QSER1 TULP4 

CDK6 KBTBD6 RAB11FIP2 TXNRD1 

CDV3 KDM5B RAPGEF2 UHMK1 

CELF1 KMT2A RBM12 USP46 

CEMIP2 KMT2C RCOR1 USP9X 
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CHORDC1 LANCL1 RHOBTB3 VANGL1 

CLTC LCOR RIC1 WAC 

CNOT6 LEPROT RLIM WAPL 

CNST LHFPL2 RNF213 WDR26 

CREBL2 LPGAT1 RNF44 WDR33 

CREBRF LPP RREB1 WEE1 

CUX1 LRRC58 SCARB2 XIAP 

CYLD MAP1B SCD YAP1 

DAG1 MAP3K2 SERTAD2 YOD1 

DCAF7 MAP4 SESN3 ZFP36L1 

DCP2 MAPK1 SETD2 ZMYND11 

DDX21 MAT2A SH3GLB1 ZNF644 

DDX3X MAVS SIN3A ZNF652 

DDX6 MBD2 SIX4   

DICER1 MBNL1 SKIL  

DR1 MCL1 SLC35F5  

E2F3 MDM2 SLC38A1  

E2F7 MET SNTB2  

 

 

According to mRNA level performed by GEPIA2, the total upregulated and downregulated gene 

targets are 147 and 29 respectively as shown in Table below.  

Targets GBM Targets GBM Targets GBM 

ABCA1 up LEPROT up TMEM245 up 

ADAM10 up LHFPL2 up TNKS2 up 

ADAR up LPGAT1 down TNPO1 up 

AFF4 up LPP up TNRC6B down 

AKAP11 down LRRC58 up TNRC6C down 

ANKFY1 up MAP1B down TRAM1 up 

APLP2 up MAP3K2 
 

TRIO up 
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ARHGAP11A up MAP4 no change TSC22D2 up 

ARHGAP5 slight down MAPK1 up TTN down 

ARHGEF12 no change MAT2A up TULP4 down 

ARRDC3 up MAVS up TXNRD1 up 

ASH1L down MBD2 up UHMK1 up 

ATP2B1 down MBNL1 up USP46 down 

ATXN1 down MCL1 up USP9X up 

ATXN1L up MDM2 up VANGL1 up 

BCAT1 up MET no change WAC down 

BCL2L11 up MFHAS1 up WAPL - 

BICC1 no change MPRIP down WDR26 up 

BICD1 up MTDH up WDR33 up 

BMPR2 up MTPN up WEE1 up 

BRWD1 down NAA50 up XIAP up 

C5orf24 up NAP1L1 up YAP1 up 

CALU up NF1 no change YOD1 up 

CANX up NHLRC2 no change ZFP36L1 up 

CASK up NR2C2 no change ZMYND11 down 

CBX5 up NRP1 up ZNF644 up 

CCNT2 up NSD1 up ZNF652 up 

CDC27 up NUCKS1 up 
  

CDK6 up NUFIP2 up 
  

CDV3 up NUP58 NA 
  

CELF1 up PAK2 up 
  

CEMIP2 - PAPOLA up 
  

CHORDC1 down PJA2 up 
  

CLTC up PODXL up 
  

CNOT6 up POU2F1 up 
  

CNST down PPP1CC up 
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CREBL2 up PRDM2 down 
  

CREBRF No change PRRC1 up 
  

CUX1 up PTEN up 
  

CYLD up PTPN14 up 
  

DAG1 up PTPRJ up 
  

DCAF7 up PURB up 
  

DCP2 up QKI up 
  

DDX21 up QSER1 up 
  

DDX3X up RAB11FIP2 down 
  

DDX6 up RAPGEF2 down 
  

DICER1 no change RBM12 up 
  

DR1 up RCOR1 up 
  

E2F3 up RHOBTB3 up 
  

E2F7 up RIC1 up 
  

EFCAB14 up RLIM up 
  

EIF5 up RNF213 up 
  

ENTPD7 up RNF44 down 
  

FAM222B up RREB1 up 
  

FBXO45 no change SCARB2 up 
  

FEM1B slightly up SCD down 
  

FGF2 up SERTAD2 up 
  

FNDC3B up SESN3 up 
  

FOSL2 up SETD2 up 
  

FOXJ3 up SH3GLB1 up 
  

FOXO3 no change SIN3A up 
  

FRS2 up SIX4 up 
  

FRYL no change SKIL up 
  

GAN no change SLC35F5 up 
  

GFPT1 up SLC38A1 down 
  



 

40 
 

GIT2 no change SNTB2 up 
  

GLS down SOD2 up 
  

GRSF1 up SON up 
  

GSPT1 up SORT1 no change 
  

GTF3C4 up SP1 up 
  

HELZ up SPIN1 no change 
  

HIF1AN up SPTY2D1 up 
  

HIPK1 up SSH1 up 
  

HMGA2 up SSX2IP down 
  

HNRNPU up STRN up 
  

IREB2 up SYNE2 up 
  

ITGB8 up TBL1XR1 up 
  

KBTBD2 up TCF12 up 
  

KBTBD6 slightly up TEAD1 up 
  

KDM5B up TET2 up 
  

KMT2A down TFRC up 
  

KMT2C up TGFBR1 up 
  

LANCL1 down THBS1 up 
  

LCOR down TMED7 up 
  

 

The hallmark classification data for all 195 identified common gene targets is as mentioned 

below: 

Term 

Adjusted 

P-value Genes 

SUSTAINING 

PROLIFERATIVE 

SIGNALING 0.19 

VANGL1;MAVS;DICER1;MAPK1;DDX3X;CUX1;SORT1;

CREBL2;MAP3K2;SIN3A;POU2F1;TFRC;BCL2L11;CDK6;

SSX2IP;AFF4;PTPRJ;PTEN;THBS1;TGFBR1;MTPN;NRP1;

BMPR2;E2F3;TBL1XR1;HIPK1;ARHGEF12;FRS2;FGF2;D

DX6;ITGB8;NF1;SCD;PPP1CC;FOXO3;KMT2A;TXNRD1;

YAP1;WEE1;PAK2;ADAM10;MDM2;RAPGEF2;SP1;TET2;
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ARHGAP5;CNOT6;ARHGAP11A;MET;TEAD1;MCL1;NAP

1L1;CLTC 
 

GENOME INSTABILITY 0.06 

KMT2C; WEE1; CLTC; DICER1; CDK6; MDM2; CUX1; 

TET2; SETD2; PTEN; MET; NAP1L1; SESN3; THBS1; 

NUCKS1; XIAP 
 

EVADING GROWTH 

SUPPRESSORS 0.13 

KMT2C;SOD2;MAVS;DICER1;MAPK1;DDX3X;CUX1;SO

RT1;PTPN14;CREBL2;MAP3K2;SIN3A;STRN;TFRC;MAP4

;QKI;BCL2L11;CDK6;SERTAD2;PTPRJ;SKIL;MFHAS1;PT

EN;THBS1;TGFBR1;NRP1;BMPR2;E2F3;HMGA2;TBL1XR

1;KBTBD6;FGF2;CYLD;NF1;GLS;PPP1CC;FOXO3;CELF1;

TXNRD1;YAP1;E2F7;PAK2;SP1;MDM2;RAPGEF2;TET2;A

RHGAP5;ARHGAP11A;MET;TEAD1;MCL1 
 

EVADING IMMUNE 

DESTRUCTION 0.30 

FOXO3; ENTPD7; MAVS; PAK2; MAPK1; CUX1; TMED7; 

ARHGAP5; ADAR; PTEN; MET; KMT2A 
 

SUSTAINED 

ANGIOGENESIS 1.48E-05 

DICER1;MAPK1;CUX1;SETD2;ZFP36L1;STRN;QKI;THBS

1;TGFBR1;NRP1;BMPR2;HMGA2;RNF213;HIPK1;ARHGE

F12;FRS2;FGF2;CYLD;ITGB8;NF1;PPP1CC;YAP1;SP1;MD

M2;MTDH;MET;KMT2A;DDX6 
 

TISSUE INVASION AND 

METASTASIS 0.001 

KMT2C;VANGL1;DICER1;MAPK1;DDX3X;PODXL;SORT

1;CUX1;MAP3K2;STRN;XIAP;MAP4;ASH1L;DAG1;SSX2I

P;AFF4;PTPRJ;PTEN;SSH1;THBS1;TGFBR1;USP9X;BMPR

2;NRP1;TBL1XR1;HMGA2;ARHGEF12;FRS2;FGF2;CYLD;

ITGB8;NF1;PPP1CC;RHOBTB3;YAP1;PAK2;SP1;CASK;A

DAM10;RAPGEF2;LPP;MDM2;ARHGAP5;TET2;MAP1B;

MET;KMT2A;GIT2 
 

TUMOR-PROMOTING 

INFLAMMATION 0.30 

XIAP; FOXO3; ENTPD7; CANX; MAPK1; TMED7; 

ARHGAP5; CYLD; ITGB8; KMT2A; THBS1; TFRC 
 

RESISTING CELL 

DEATH 0.001 

SOD2;SIX4;DICER1;MAPK1;DDX3X;CUX1;SORT1;MAP3

K2;SIN3A;STRN;XIAP;TFRC;MAP4;DAG1;BCL2L11;CDK

6;PTEN;SSH1;THBS1;TGFBR1;BMPR2;E2F3;HMGA2;FGF

2;DDX6;CYLD;ITGB8;NF1;SESN3;FOXO3;SCARB2;E2F7;
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PAK2;ADAM10;MDM2;SP1;SON;MTDH;MET;KMT2A;M

CL1;CLTC 
 

REPROGRAMMING 

ENERGY METABOLISM 0.10 

FOXO3; SOD2; ARRDC3; BCL2L11; MAPK1; TET2; 

DDX3X; MDM2; GFPT1; ZFP36L1; MET; PTEN; SCD; 

GLS; TGFBR1 
 

REPLICATIVE 

IMMORTALITY 0.0001 

KMT2C; VANGL1; DICER1; MAPK1; TNKS2; CDK6; 

SKIL; PTEN; THBS1; TGFBR1; NRP1; BMPR2; E2F3; 

TBL1XR1; FGF2; FOXO3; E2F7; SP1; MDM2; KMT2A 
 

 

 

 

 

Figure-12: Hall marks classification of 195 targets 
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On performing protein level analysis for 99 gene targets using UALCAN, the upregulated and 

downregulated gene targets were:  

Gene 
 Protein 

level 

Statistical 

significance 

value 

Gene 
 Protein 

level 

Statistical 

significance 

value 

CEMIP2 down 2.26E-01 TRIO down 8.11E-23 

AKAP11 down 4.15E-01 TSC22D2 down 1.05E-23 

ATXN1 down 9.14E-01 USP9X down 1.60E-10 

PRDM2 down 5.99E-01 WDR26 down 5.47E-08 

SPIN1 down 4.19E-01 YOD1 down 2.18E-06 

FEM1B down 2.61E-01 EIF5 down 1.06E-02 

ATXN1L down 5.12E-01 FOXO3 down 2.31E-04 

DCP2 down 6.34E-01 UHMK1 - - 

PTPRJ down 4.14E-01 KMT2A Up 2.07E-04 

SNTB2 down 2.72E-01 GSPT1 up 1.75E-08 

ATP2B1 down 1.94E-25 GTF3C4 up 1.16E-11 

CHORDC1 down 3.25E-08 HELZ Up 4.59E-11 

CNST down 3.13E-07 HIPK1 Up 8.41E-04 

GLS down 7.94E-27 HNRNPU Up 1.12E-10 

MPRIP down 6.47E-10 IREB2 up 5.97E-07 

RAB11FIP2 down 3.08E-19 KDM5B Up 2.07E-04 

RAPGEF2 down 3.45E-46 KMT2C Up 1.52E-08 

SLC38A1 down 3.62E-01 LHFPL2 Up 1.01E-01 

SSX2IP down 1.33E-09 LPP Up 4.25E-06 

TTN down 4.16E-10 RNF44 - - 

USP46 down 1.30E-28 LCOR - - 

ARHGEF12 down 4.07E-13 ARHGAP11A - - 

CREBRF down 6.54E-03 ARRDC3 - - 

FBXO45 Down 2.37E-05 BCL2L11 - - 
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GAN down 1.82E-04 C5orf24 - - 

MET down 6.20E-05 LEPROT - - 

NF1 down 2.73E-25 MDM2 - - 

SORT1 down 1.26E-06 SCD Up 2.75E-03 

ARHGAP5 down 6.74E-11 CELF1 
No 

change 
4.86E-01 

APLP2 down 1.58E-13 DAG1 
No 

change  
5.68E-01 

BMPR2 down 5.41E-26 ITGB8 down 6.02E-01 

CASK down 2.46E-10 KBTBD2 Up 2.86E-02 

CLTC down 1.54E-33 MFHAS1 down 1.81E-01 

CYLD down 5.81E-45 NAP1L1 up 4.60E-02 

DCAF7 down 2.68E-10 NSD1 Up 9.92E-02 

FRS2 down 5.17E-05 SESN3 
No 

change 
9.92E-02 

GRSF1 down 3.02E-03 FAM222B 
No 

change 
9.33E-01 

MAPK1 down 1.02E-09 TULP4 No data  - 

MAT2A down 3.64E-06 SERTAD2 No data - 

NUCKS1 down 1.56E-07 SIX4 No data - 

PAK2 down 7.36E-03 SKIL No data - 

PJA2 down 2.40E-04 SLC35F5 No data - 

PPP1CC down 1.37E-20 TET2 No data - 

PTEN Down 1.13E-15 TMED7 No data - 

PURB down 4.42E-04 TNKS2 No data - 

RHOBTB3 down 3.26E-03 CREBL2 
not 

identified 
- 

SSH1 down 2.02E-05 E2F7 
not 

identified 
- 
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STRN down 6.23E-10 ENTPD7 
not 

identified 
- 

TMEM245 down 1.05E-09 CCNT2 up 2.73E-01 

      EFCAB14 up 4.83E-02 

 

On studying the network and interaction of these gene targets using STRING software, we 

concluded that:  

1. Molecular function 

Term description Matching proteins in your network 

Lys63-specific de-ubiquitinase activity USP9X, YOD1, CYLD 

Protein kinase binding 

 

PAK2, FOXO3, PPP1CC, PJA2, RAB11FIP2, 

PTEN, BMPR2, RHOBTB3, CYLD, FRS2, 

TTN, CLTC 

Enzyme binding 

 

MAPK1, SORT1, STRN, PAK2, MET, YOD1, 

FOXO3, PPP1CC, PJA2, CNST, RAB11FIP2, 

PTEN, BMPR2, RHOBTB3, CYLD, FRS2, 

TTN, CLTC 

Purine ribonucleotide binding 

 

MAPK1, EIF5, RAPGEF2, MAT2A, PAK2, 

MET, CHORDC1, TRIO, BMPR2, RHOBTB3, 

ARHGAP5, ATP2B1, TTN, CASK 

Protein binding 

 

MAPK1, EIF5, SORT1, STRN, RAPGEF2, 

MAT2A, PAK2, SSH1, USP9X, MET, 

CHORDC1, YOD1, FOXO3, SSX2IP, PPP1CC, 

PJA2, CNST, NUCKS1, RAB11FIP2, PTEN, 

BMPR2, RHOBTB3, ARHGAP5, PURB, 

MPRIP, ARHGEF12, CYLD, ATP2B1, FRS2, 

TTN, CLTC, CASK, APLP2 
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2. Wiki pathway 

Term description 

Matching proteins in your 

network 

Hepatocyte growth factor receptor signaling MAPK1, MET, PTEN 

Splicing factor NOVA regulated synaptic proteins ATP2B1, CASK, APLP2 

Neural crest cell migration in cancer SORT1, PAK2, TRIO 

MET in type 1 papillary renal cell carcinoma MAPK1, STRN, PAK2, MET 

Glioblastoma signaling pathways 

MAPK1, MET, FOXO3, NF1, 

PTEN 

EGFR tyrosine kinase inhibitor resistance 

MAPK1, MET, FOXO3, NF1, 

PTEN 

Synaptic signaling pathways associated with autism 

spectrum disorder MAPK1, NF1, PTEN 

Endometrial cancer MAPK1, FOXO3, PTEN 

Melanoma MAPK1, NF1, PTEN 

Fragile X syndrome MAPK1, NF1, PTEN, CLTC 

 

3. KEGG pathway 

Term description Matching proteins in your network 

EGFR tyrosine kinase inhibitor 

resistance MAPK1, MET, FOXO3, NF1, PTEN 

Central carbon metabolism in cancer MAPK1, MET, GLS, PTEN 

Endometrial cancer MAPK1, FOXO3, PTEN 

Renal cell carcinoma MAPK1, PAK2, MET 

Non-small cell lung cancer MAPK1, MET, FOXO3 

Adherens junction MAPK1, MET, SSX2IP 

Melanoma MAPK1, MET, PTEN 

Neurotrophin signaling pathway MAPK1, SORT1, FOXO3, FRS2 
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Axon guidance 

MAPK1, PAK2, SSH1, MET, BMPR2, 

ARHGEF12 

MicroRNAs in cancer MAPK1, MET, GLS, PTEN, BMPR2 

 

4. Reactome pathway  

Term description Matching proteins in your network 

Frs2-mediated activation MAPK1, FRS2 

ALK mutants bind TKIs STRN, CLTC 

RHOV GTPase cycle PAK2, USP9X, CLTC 

RHOU GTPase cycle PAK2, USP9X, CLTC 

Signaling by ALK fusions and activated point mutants MAPK1, STRN, FRS2, CLTC 

RHOJ GTPase cycle PAK2, TRIO, ARHGAP5 

Oncogenic MAPK signaling MAPK1, PPP1CC, NF1, MPRIP 

PI3K/AKT Signaling in Cancer STRN, MET, FOXO3, PTEN, FRS2 

Semaphorin interactions PAK2, MET, ARHGEF12 

Negative regulation of the PI3K/AKT network MAPK1, STRN, MET, PTEN, FRS2 

 

4.0 Discussion: 

This study aimed to identify miRNAs that could serve as potential therapeutic targets for 

glioblastoma multiforme (GBM). To achieve this, a comprehensive analysis of miRNA targets and 

their functional relevance was conducted. A literature search was conducted and identified 

predominant miRNAs implicated in GBM such as miR-21-5p, miR-93-5p, miR-155-5p, miR-10b-

5p, miR-221-3p, miR-222-3p, miR-182-5p, miR-196a-5p. Subsequently, the experimentally 

verified targets of these miRNAs were extracted from miRtarbase, tarbase whereas the predicted 

targets were extracted from miRdip database. Overlapping experimental and predicted targets were 

subjected to hallmark classification to assess their tumor relevance in GBM. A total of 195 gene 

targets were identified, encompassing various hallmarks of cancer as shown in figure-12. Of them, 

genome instability, sustained angiogenesis, tissue invasion and metastasis, resisting cell death, and 

replicative immortality were found to be statistically significant. To evaluate the impact of 

miRNA-mediated regulation, mRNA and protein expression levels were analysed. While 147 and 

29 targets were upregulated and downregulated respectively at the mRNA level according to 
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GEPIA 2. Protein expression analysis using UALCAN showed 45 of them were highly 

downregulated according to their statistical values. These downregulated gene targets were further 

investigated to elucidate their biological functions and involvement in GBM pathogenesis using 

STRING analysis. Mainly the role of these proteins based on data from wiki pathways, KEGG 

pathways, reactome pathways were analysed and briefly discussed here. Wiki Pathways analysis 

revealed that these miRNA target proteins have potential role in in Hepatocyte growth factor 

receptor signalling, Neural crest cell migration in cancer, MET in type 1 papillary renal cell 

carcinoma, Glioblastoma signalling pathways, EGFR tyrosine kinase inhibitor resistance, 

Endometrial cancer, Melanoma. In KEGG pathways analysis EGFR tyrosine kinase inhibitor 

resistance, Central carbon metabolism in cancer, Endometrial cancer, Renal cell carcinoma, non-

small cell lung cancer, Melanoma, Neurotrophin signalling pathway and MicroRNAs in cancer. In 

Reactome pathways analysis Signalling by ALK fusions and activated point mutants, Oncogenic 

MAPK signalling, PI3K/AKT Signalling in Cancer, Negative regulation of the PI3K/AKT 

network were identified. Together, the pathway analysis revealed the involvement of key proteins 

in cancer and GBM-related pathways. The present study revealed MAPK1, NF1, FOXO3, MET 

and PTEN as key hub players in glioblastoma that are regulated by these oncomeric miRNAs 

(figure-13). The outcome of this study may help in identifying miRNA panels for various 

therapeutic applications in GBM, in future.   
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Figure-13: Gene target interactions network  
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